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Abstract

This paper presents DigitalSculpture, an interactive sculpting environment founded upon iso-surfaces
extracted from recursively subdivided, 3D irregular grids. Our unique implicit surface model arises from
an interpolatory, volumetric subdivision scheme that is C1 continuous across the domains defined by
arbitrary 3D irregular grids. We assign scalar coefficients and color to each control vertex and allow
these quantities to participate in the volumetric subdivision of irregular grids. In the subdivision limit, a
virtual sculpture is obtained by extracting the zero-level from the volumetric, scalar field defined over the
irregular grid. This novel shape geometry extends concepts from solid modeling, recursive subdivision,
and implicit surfaces; facilitates many techniques for interactive sculpting; permits rapid, local evaluation
of iso-surfaces; and affords level-of-detail control of the sculpted surfaces.

Figure 1: Virtual sculptures created in our DigitalSculpture modeling environment.

1 Introduction and Motivation

This paper presents a new implicit surface modeling technique founded upon implicit subdivision solids,
which define scalar fields over 3D irregular grids. We develop an accompanying sculpting system called
DigitalSculpture that employs implicit subdivision solids as the underlying shape primitive. In our new
shape design approach, the boundary of an object is given by a level surface of a volumetric function defined
over an arbitrary, volumetric region (spanned by hexahedral meshes) of complex topology. The space is
uniquely defined by our new interpolatory, volumetric subdivision algorithm [19]. (By interpolatory we
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mean that vertices are preserved or interpolated between subdivision levels.) Our subdivision scheme is
founded upon the cubic, Lagrange interpolating polynomial and can be applied over arbitrary hexahedral
meshes. The scalar field from which the iso-surface arises is constructed by first assigning a scalar coefficient
to each vertex of the control mesh. Then the subdivision algorithm refines both the positions and the scalar
coefficients of the control vertices with the same set of rules. After subdivision of these control coefficients,
an iso-surface can be extracted from the subdivided scalar field. The surface can be modified by directly
changing the control coefficients.

Our approach exhibits several capabilities in a single, integrated framework which, to our best knowl-
edge, can not be accommodated in other existing approaches. First, our framework supports sculpting of
implicit surfaces over non-rectilinear working spaces (grids). Such flexibility can help to address the blend-
ing problems as well as provide a control lattice appropriate for free-form deformation. Second, blend-
ing is guaranteed to be at least C1 throughout the volumetric domain, thereby permitting the definition of
smooth shapes. Finer features like corners and cusps can be approximated by increasing the grid resolution.
Third, the subdivision algorithm’s continuity also guarantees smoothness even when the working space is
deformed, which can be manipulated in a global or local fashion using FFD-like techniques.

2 Related Work

This work is strongly motivated by a number of disparate areas of research, including volumetric sculpt-
ing [1, 25, 34], implicit and functional modeling [4, 24], and volumetric subdivision schemes [2, 6, 18]. To
our best knowledge, no one has yet proposed the idea of defining an implicit surface as the iso-level of a
smooth scalar field defined by recursive volumetric subdivision algorithms. Cani and Hornus [5] proposed
the idea of defining an implicit surface by a skeleton of subdivision curves. This reliance on skeletons limits
the ranges of definable shapes and the types of interaction that can be used to manipulate such objects. De-
waele and Cani [10] present an interesting implicit surface sculpting system that employs a pseudo-physical
model to simulate deformable materials. Their approach is best suited for medium-scale and large-scale
deformations and cannot represent the kinds of detail our framework can. Museth et al. [21] recently pro-
posed a framework for editing implicit surfaces based on the traditional level-set method. Their model
is particularly well-suited for performing large-scale operations on scanned models, but its computational
expensive precludes its use in interactive sculpting. Turk and colleagues [32] present a framework for mod-
eling implicit surfaces that interpolate a given set of constraints. They employ a global solution scheme that
can accommodate at most a few thousand coefficients. Our work, in contrast, can support working spaces
consisting of over 105 control vertices. Reuter et al. [27] employ point-based modeling and radial basis
functions to represent and render implicit surfaces. As in Turks et al’sapproach, however, their method can
accommodate a limited amount of detail since at most a few thousand coefficients can be employed in real-
time. Wyvill et al. [36] and works by later researches fuse the concepts of boolean operators and blending
functions into a single model. We present a subdivision-based alternative that supports similar warping,
blending and boolean operations in a single, subdivision-based framework. Ferley et al. [12,13] developed a
multiresolution framework for volume sculpting of scalar fields. Their approach requires a rectilinear grid,
however, and cannot accommodate the large deformations supported by our model.

Unlike commonly-used spatial decomposition algorithms such as quadtree or octree construction, our
volumetric subdivision scheme generalizes popular subdivision surfaces to the construction of solid or vol-
umetric models. That is, our volumetric subdivision scheme, in the mathematical limit of the recursive
application of our subdivision rules over control meshes, unambiguously defines a smooth, solid object with
provable continuity and geometric properties). The existing volumetric model that most closely resembles
our approach is the scalar B-spline approach investigated by Raviv and Elber [26], Schmitt et al. [28, 29],
and Hua and Qin [15]. In this approach, a smooth, volumetric, scalar field is defined by continuously



DigitalSculpture: A Subdivision-based Approach to Interactive Implicit Surface Modeling 3

blending a set of scalar coefficients with B-spline basis functions. An iso-surface extracted from the field
defines the virtual sculpture. Usually, these scalar fields are topologically rectangular, employ computation-
ally expensive polynomials, and are modified indirectly by the user. Our work does not suffer from these
shortcomings because we employ a simple, yet powerful, direct approach founded upon recursive subdi-
vision solid schemes. The spaces in which our implicit surfaces are defined can have any geometric and
topological shape, can be modified directly, and can be sampled at any global level of refinement.

Our DigitalSculpture system is also related to our earlier Virtual Clay sculpting system [20]. A key
distinction is that the Virtual Clay system defines solid objects with the subdivision solid geometry itself.
Also, that model is physically-based and cannot change topology very easily. Furthermore, sculptures cre-
ated in the Virtual Clay modeling system cannot represent details without extensive adaptive refinement. In
contrast, our newer modeling approach uses subdivision solids only as a convenient mechanism for defining
a volumetric space. The sculpted models themselves are actually implicit surfaces defined over that space.
Compared to Virtual Clay models, objects sculpted in our DigitalSculpture system can undergo topological
changes more easily, can represent fine features and details more readily, and can exhibit a much wider range
of shapes.

3 Subdivision of Irregular Grids

This section reviews volumetric subdivision algorithms and briefly describes our new scheme for volumetric,
interpolatory subdivision solids. The details of the subdivision algorithm, including its derivation, can be
found in [19].

3.1 Background of Subdivision Solid Schemes

Subdivision solids have recently emerged as a new solid modeling approach and interactive deformation
technique. In comparison with established modeling techniques associated with subdivision surfaces, sub-
division solid formulations transcend surface-based approaches by defining geometry and topology both
in the interior and on the boundary of solid objects. To our best knowledge, all existing subdivision solid
schemes but two are approximating in nature. One of the exceptions is the interpolatory algorithm by
Pascucci and Bajaj [23], which is a tensor-product generalization of Dyn et al’s four-point scheme [11]
to rectilinear, volumetric grids. The other scheme is an algorithm we recently published [7] for recursive
subdivision of meshes organized around octet-truss structures. With an approximating subdivision scheme,
each application of the subdivision algorithm causes the geometry to “shrink” away from the initial control
mesh.

The first documented volumetric subdivision algorithm, that of MacCracken and Joy [18], generalizes
cubic B-spline solids to meshes of arbitrary topology. Bajaj and colleagues [2] have proposed an alternate
to the MacCracken-Joy algorithm that also reproduces cubic B-spline volumes under regular topological
conditions but is easier to analyze mathematically. Chang et al. [6] derived a C5 subdivision solid scheme
based on box splines that must be applied over hybrid tetrahedral/octrahedral meshes. Other recent work
includes the investigation of wavelet decompositions of subdivision volumes [3], hierarchical representation
of time-varying data [17], and physically-based animation and volumetric sculpting [20].

3.2 Our Volumetric Subdivision Scheme

We employ a new subdivision scheme we recently developed in order to define volumetric scalar fields over
arbitrary 3D grids. In the interest of brevity, we provide only an overview of the scheme. The interested
reader is encouraged to see [19], which discusses the algorithm in detail and provides its complete derivation.
For this purposes of this paper, we will only specify the subdivision rules for meshes of both regular and
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non-regular topologies. Then we will describe how the scheme is used to define smooth, volumetric scalar
fields.
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Figure 2: Subdivision masks for the scheme over regular topology. (a) Cell-point weights: wp = 6w+1
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Our interpolatory, volumetric subdivision algorithm is derived from a generalization of the tri-cubic,
interpolating Lagrange polynomial. As we shall see later, the interpolatory nature of our algorithm is critical
for defining implicit surfaces in our framework. Given a control mesh consisting of hexahedral cells, quadri-
lateral faces, edges and vertices, the algorithm recursively subdivides the space enclosed by the mesh. The
algorithm is designed to represent cubic polynomials in the regular case while reproducing C 1 continuous
volumetric spaces under most non-regular topological conditions. (Non-regular topology meshes are those
containing vertices of valence not equal to six.) A subdivision weight, which can be specified to meet design
constraints, acts similar to the tension parameter of Butterfly subdivision surfaces. The standard weight is
1

16
, which can be obtained from the derivation of the regular case of the algorithm and which we use in the

DigitalSculpture system.
The algorithm takes as input and produces as output a hexahedral mesh. Tetrahedral meshes can be

converted into hexahedra with a Catmull-Clark-like split [2]. In fact, any mesh containing cells that have
vertices of valence three can be converted into a hexahedral mesh with this technique. The number of
hexahedra created from such a cell is equal to its number of vertices.

3.3 Matrix Representation

Like all procedural subdivision algorithms, our subdivision solid can be expressed as a global matrix multi-
plication:

d = Ap, (1)

where p is a column vector of the positions of the control points; the matrix A is a sparse, rectangular, global
subdivision matrix that contains weights given by the subdivision rules; and the column vector d gives the
positions of the subdivided mesh. (We will refer to such points as subdivided points.) Hence, whenever the
control geometry changes, it is easy to reevaluate the subdivided geometry simply by performing a matrix
multiplication. Note that matrix A is a global subdivision matrix, and that local changes to the subdivision
rules can be expressed by changing a few rows.
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Figure 3: Subdivision masks for the scheme over non-regular topology. (a) Face-point weights: wp = 2w+1
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4 From Subdivision Solids to Implicit Surfaces

In our framework, an implicit subdivision solid is defined by adding a fourth coordinate, a scalar coefficient,
to the control vertices of a subdivision solid mesh. We refer to the control mesh and its corresponding scalar
coefficients (control coefficients) as the working space in this paper, since virtual sculptures are created
over this space. The scalar coefficients are subdivided with the same rules as the geometry to produce a
smooth volumetric field. The strong relationship between the subdivision volume algorithm and underlying
iso-surfaces can be seen clearly in Figure 4. The train sculpture – defined implicitly by the scalar values
stored inside the solid – deforms as a result of geometric deformation of the control mesh. This interplay
between subdivision solid geometry and a corresponding scalar field forms the fundamental representation
used in this work. The iso-surfaces in the figure were evaluated by first subdividing the control mesh (i.e.,
working space) once, and by then polygonizing the iso-level seen in the figure. The zero-level lies within
the green region of the scalar field and is the iso-level we use in our DigitalSculpture to represent virtual
sculptures. Since our sculpting tools have local support, regions of the working space that do not affect the
zero-level are assigned -1 and are shaded purple in the figure.

Figure 4: A train model, defined as the zero-level of a scalar field associated with the subdivision geometry,
deforms as a consequence of deforming the working space. First row: undeformed working space; second
row: deformed working space. First column: subdivided coefficients; second column: cut-away views of
level sets ` ∈ [−0.8,−0.5, 0.0, 0.6, 0.9].
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The global subdivision operation can now be rewritten as

d̂ = Âp̂, (2)

where d̂ and p̂ include the (x, y, z) components of d and p, respectively, as well as a fourth component
that represents the scalar coefficients. Note that the size and contents of A are adjusted to accommodate the
scalar values appended to d and p. We denote this modified subdivision matrix as Â. The vector d̂ can be
considered an approximation of the continuous scalar field that would be obtained after an infinite number
of subdivisions of the working space (p̂). Throughout the remainder of this discussion, we assume that all
vertices (including both the control vertices and the subdivided vertices) are assigned scalar coefficients.
The term control coefficients will refer to the scalar values of the control points, and subdivided coefficients
will refer to the scalar values of the subdivided points (i.e., vertices in the subdivided mesh).

Now, a scalar field function is generally characterized by

f(x, y, z) = 0, (3)

for some (continuous) function f . A surface defined by the function is a level-set:

{(x, y, z) | f(x, y, z) = `}. (4)

By collecting all the-level sets whose values are greater (or less) than a given threshold, we define an implicit
solid as

{(x, y, z) | f(x, y, z) ≥ `}. (5)

By convention, we assume in this work that ` = 0, and that f is positive inside the solid and negative outside
the solid.

Hence, the fundamental contribution of this work is a new way of defining the field function, f(x, y, z),
which we approximate with p̂ after several levels of subdivision:

f(x, y, z) ≈ d̂ = Âp̂. (6)

Rather than represent the scalar field as a collection of algebraic functions, we define the scalar field as
a collection of coefficients obtained via volumetric subdivision of a smaller set of coefficients. Since the
subdivision algorithm has provable smoothness properties, the implicit surfaces are guaranteed to be at
least C1 continuous for most topological configurations. (The specification of C0 features would require a
wavelet-based decomposition [3], which we are presently investigating for future incorporation into Digi-
talSculpture.) The surfaces are modified directly by changing the scalar values stored at the control vertices.
In contrast, traditional implicit surface representations are often modified by changing the polynomial coef-
ficients, which usually have no intuitive or geometric meaning. The user modifies the scalar field through a
graphical interface and sculpting tools. We also have developed a simple algorithm for converting existing
polygonal and volumetric data-sets into our representation.

In practice, it can be very computationally expensive to evaluate Equation 6 over the entire domain,
even though Â is stored in sparse matrix format. Therefore, we instead compute d̂ on a hexahedron-by-
hexahedron basis. If the same subdivision rules are employed throughout the entire 3D space and the control
mesh is regular, a single, local subdivision matrix can be used:

d̂i = Sp̂i, (7)

where d̂i represents a local block of the subdivided points and subdivided coefficients, p̂i represents the
5 × 5 × 5 group of control points and coefficients that influence d̂i, and S is the local subdivision matrix
itself. Each control cell of eight vertices will generate (2` + 1)3 subdivided vertices, where ` is the number
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of subdivisions performed. Because our subdivision algorithm has local support, the subdivision matrix
has dimension (2` + 1)3 × 56. (The 8 corner vertices of a 4 × 4 × 4 block of vertices are not required.)
For non-regular topological settings, several local subdivision matrices must be maintained. Since this can
become very complicated to implement, our system instead uses global subdivision matrices for non-regular
topologies.

Cells on the boundary of the control mesh may not be subdivided by the standard rules since not enough
vertices are present to define the subdivision masks. In these regions we simply use linear interpolation to
define the edge-points, face-points and cell-points. In such cases, the system employs a local subdivision
matrix of size (2` + 1)3 × 8, and we write

d̂i = Lp̂i, (8)

where d̂i, p̂i and L have definitions similar to the corresponding terms in Equation 7. In this case, p̂i

consists of a smaller 2 × 2 × 2 block of control points.
The subdivided points and scalar coefficients can now be written as a collection of local computations:

d̂ =

Ns∑

i=1

CiSp̂i +

Nl∑

i=1

CiLp̂i, (9)

where Ns and Nl are the numbers of interior and boundary cells, respectively. The p̂i represent subsets of the
global p̂ vector. The Ci are selection matrices that ensure that the contributions of the control coefficients
are properly added to the subdivided coefficients. Based on the topology of the control mesh, they select
which control coefficients affect the subdivided coefficients in a local region. That is, an entry Ci(j, k) is 1 if
control point pk influences the subdivided point dj , and is 0, otherwise. The structure of each Ci varies as a
function of both topology and vertex ordering. One selection matrix is needed for each local block of control
coefficients; different matrices are needed for the linear subdivisions performed along the boundary. These
matrices are computed directly from the edge connectivity of the control mesh. Under a regular topological
setting, it is possible to avoid their assembly if the vertices are stored in a predetermined order. In the above
notation we assume the topology is regular. As mentioned earlier, for non-regular topology, a different S

matrix would be needed for each distinct topological configuration. The p̂i would also necessarily have
different sizes.

By employing local subdivision matrices, the system is able to subdivide only those control coefficients
whose values are changed as the result of user interaction. This has large ramifications for a potential
sculpting system, since many operations can be localized. Since the subdivided points are influenced by a
small neighborhood of control coefficients, it is necessary to recompute all subdivided points affected by a
change in a single control coefficient. Fortunately, since the refinement masks overlap considerably, the cost
of recomputing a subdivided point is, in large part, shared by its neighbors.

5 Interactive Sculpting of Implicit Surfaces

5.1 Direct Editing and Modification

Any sculpting system founded upon our subdivision-based, implicit surface approach must allow modifi-
cation of the control coefficients that define the scalar field. Since our algorithm is interpolatory in nature,
scalar coefficients may be assigned values directly. This is a critical aspect of the subdivision scheme. If the
algorithm were approximating in nature, the inverse or pseudo-inverse of the subdivision matrix would be
required to create a specified shape. For a real-time application like virtual sculpting, it would be imprac-
tical to employ the inverse of the global subdivision matrix, Â. Local inverse matrices could, in theory, be
used, but it is unclear how large a subset of the control mesh would have to be used. More seriously, such
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“macro-patches” of control vertices would necessarily destroy the smoothness properties of the algorithm.
Their use would also complicate the implementation of the sculpting system.

Since we have the freedom to manipulate the control coefficients directly, it remains to define what
sort of functionality is desirable. In the computer graphics literature there exist many ways in which users
interact with virtual models. For instance, CSG provides a very intuitive mechanism for defining certain
kinds of shapes, especially mechanical objects and other models that can be described as the addition and
subtraction of solid primitives. Feature-based design of this sort can provide significant functionality for
a modeling system and expedite the design process. In light of the desirability and popularity of CSG,
constructive solid geometry operators are fully supported in our sculpting system and are represented as
volumetric field functions. They can be expressed as

d̂ =

Ns⊕

i=1

CiSp̂i +

Nl⊕

i=1

CiLp̂i, (10)

where
⊕

is a Boolean operator. Hence, a CSG operator is defined simply as a direct modification of
the control coefficients followed by subdivision. The iso-levels are then updated implicitly as a result of
modifying the control coefficients. “Copy-and-paste” functionality (Figure 5) can be implemented in a

Figure 5: Copy-and-paste functionality.

similar fashion to CSG union. Given a 3D region of scalar values stored in a volumetric “clipboard,” CSG
union may be used to update the working space:

d̂ =

Ns⋃

i=1

CiSTr̂i +

Nl⋃

i=1

CiLTr̂i, (11)

where
⋃

indicates union and T is a transformation operator that translates the scalar components of the
clipboard, r̂, to the desired position in the working space. The r̂i vector represents a local 5×5×5 subset of
the clipboard’s control coefficients. Resampling is necessary if the coordinate positions of the coefficients
in the clipboard and those of the working space do not coincide. This can cause details to be lost if the
underlying grids are not of the resolution required to preserve desired features. Such problems are inherent
in sampled representations such as ours, and can be avoided only by using larger grids or multi-resolution
approaches. During the paste operation, only the scalar coefficients are modified. The positions of the
control coefficients remain unchanged. The coefficients lying on the boundary of the clipboard region are
also filtered in order to avoid aliasing.

DigitalSculpture also features a spray painting tool (Figure 6) to add color to sculptures. Unlike typical
spray paint, however, our virtual paint covers a volumetric region of space. In this manner the user actually
defines a 3D texture over the entire working space. Each control coefficient is assigned an (r, g, b) triple to
store the red, green and blue color components at that position. The colors are subdivided with the same
subdivision rules as the control vertices and control coefficients. During polygonization of the iso-surface,
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the colors are linearly interpolated across edges and are assigned to triangle vertices. Typically, models are
painted after all other sculpting operations have completed, although this is not a requirement.

The spray painting tool in DigitalSculpture is a special case of what could be termed “material edit-
ing.” Material properties need not be limited to position, color, or scalar value. Physical properties such as
mass, damping, stiffness, pressure, temperature, and other quantities could also be associated with and com-
puted by the subdivision algorithm. Such a physical description would support physically-based animation,
force-based interaction, dynamic modeling, finite element modeling, etc. These ideas are currently under
investigation.

5.2 Local Deformations

Local deformations may be applied to implicit surfaces by slowly modulating the scalar control coefficients
according to a certain function. We use what is essentially a combination of dilations and erosions to achieve
rapid, local deformations. Such interaction supports the sculpting of organic-looking shapes, similar to those
created with the Teddy design system [16]. A scalar factor can be specified that controls how quickly the
regions of the space are modified by the function. For instance, our inflation tool, described below, slowly
increases the scalar values in a local region. A modulation of the scalar field can be expressed as

d̂ =

Ns⋃

i=1

ρ CiSp̂i +

Nl⋃

i=1

ρ CiLp̂i, (12)

where ρ is the rate of change. For our inflation tool, 0 < ρ ≤ 1, and for deflation, −1 ≤ ρ < 0.
If repeated CSG operations cause aliasing to arise in the scalar field, This can be achieved in a similar

manner to the deformation tools by applying a filter of small support. In our system, our sanding tool
achieves this goal by employing an approximation of the Gaussian filter. The control coefficients are filtered
and then locally subdivided to obtain the new scalar field.

Figure 6: Spray-painted alien model showing both the colored boundary surface and the interior regions.
Cutting away a portion of the sculpture reveals that the texture is actually solid in nature.
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5.3 Large-Scale Deformations

In addition to local deformation, implicit surfaces defined with our approach can also undergo global and
large-scale deformation, as shown in Figures 10 and 11. However, whereas the local deformations are
effected by modifying the scalar values of the control vertices, large-scale deformations are achieved by
modifying the positions of the control vertices. In both cases, the control structure (scalars or positions)
of the working space is modified, not the subdivided or limit volume. Since the control mesh of the work-
ing space represents a 3D space, this kind of interaction is essentially a variant of free-form deformation
(FFD) [30]. Our FFD technique is unique, however, in that it essentially is part of the model. That is, our
implicit subdivision solid approach supports free-form deformation without the use of a second representa-
tion, such as a Bézier or B-spline volume. It also permits the use of complicated FFD meshes without the
need for patching operations, as is common with extended FFD, or E-FFD [8].

The user can achieve FFD effects either by deforming the working space directly, or by using an auxiliary
subdivision solid mesh. Since the former approach can be very time-consuming, we generally employ the
latter method instead and embed working spaces in simpler subdivision meshes containing fewer control
points. Our implicit solids support FFD by using auxiliary, interpolating subdivision meshes. In this manner
we provide a unified framework used for defining, manipulating, and deforming virtual sculptures. The
system parameterizes each control coefficient of the working space inside the continuous 3D space defined
by the FFD mesh. The FFD mesh is first subdivided one or more times to approximate the continuous
space covered by the mesh. When the user moves one of the FFD control points, the control coefficients of
the working space move in response. After the deformed working space is re-subdivided by re-evaluating
Equation 2 for the new value of p̂, the new iso-surface can be extracted.

For regular meshes, each hexahedron is divided into six tetrahedra. Control coefficients of the working
space are then parameterized in the tetrahedra by their barycentric coordinates. For non-regular meshes, it
may not be possible to refine each hexahedral cell into so few tetrahedra without causing degeneracies or
intersecting triangles. In order to avoid these situations, we refine each cell in a non-regular, subdivided
FFD mesh into 24 tetrahedra by splitting the quadrilateral faces into four triangles each. Then the control
coefficients are parameterized as in the regular case of six tetrahedra.Our algorithm for supporting global
and large-scale deformations is summarized in Algorithm Listing 1.

1: The user moves the control points of the FFD mesh (q).
2: The subdivision matrix (F) of the FFD mesh is used to reposition

the subdivided points in the FFD mesh (e) through e = Fq.
3: The control coefficients of the working space (p̂) are repositioned

based on their parameterization inside the subdivided FFD mesh.
4: The subdivided coefficients are repositioned by Equation 2 (d̂ = Âp̂).
5: The new iso-surface is extracted and displayed on the screen.

Algorithm 1: Our specialized FFD algorithm for deforming implicit subdivision solids.

As Coquillart [8], and MacCracken and Joy [18] have clearly demonstrated, it is often the case that
FFD of an object can be achieved more effectively by using a deformation mesh that is not topologically
rectangular. By defining an FFD mesh that conforms to the overall shape of the deforming object, the
user can enjoy more intuitive and flexible shape control. Since our interpolatory subdivision algorithm can
support meshes of arbitrary topology, it can be employed for performing FFD over arbitrary 3D domains.
We see an example in Figure 10, for instance, wherein a sculpture defined over a rectangular working space
was deformed with a cylindrical subdivision mesh shown.
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5.4 Tool Representation

Most tools in the DigitalSculpture system are represented as field functions. Given the (x, y, z) location of
a control coefficient, the shortest distance to the boundary of a tool is computed with an evaluation function.
To avoid aliasing, each CSG tool features a transition region where the tool linearly blends the control
coefficients from −1 to +1. The maximal value is assigned to the center of the tool and is linearly blended
outwards. In voxel-based representations, a transition region of 2.5 voxels is generally recommended to
avoid artifacts [33]. Since our subdivided vertices may not be unit distance from each other, our transition
region is typically set to d2.54se, where 4s is the average inter-vertex distance.

The local deformation tools are evaluated in a similar manner. The inflation and deflation tools affect
regions of the same overall shapes as those of the CSG tools (e.g., sphere, cylinder, box, etc.) This simplifies
the implementation by permitting extensive code reuse. The sanding tool essentially filters the control
coefficients according to an approximation of the Gaussian distribution. The filter is discretized and has
local support in order to avoid reevaluation of the entire scalar and to avoid a potentially expensive global
subdivision.

5.5 Tool/Sculpture Interaction

All sculpting tools operate directly on the control vertices, either by changing their scalar coefficients or by
modifying their positions. In this respect, several sculpting operations are implemented in a similar fashion
to that of traditional voxel-based sculpting systems. The position, shape, orientation and other parameters
of the tool are specified by the user through the graphical interface. Once the tool has been activated and
the control coefficients updated, the system first determines which portions of the subdivided coefficients
need to be recomputed. This can be calculated based on the active sculpting tool and its parameters (e.g.,
radius, length, width, etc.) If a CSG or local deformation tool is applied, only a local region of the working
space needs to be re-subdivided. If FFD is performed, most – if not all – of the working space may need
to be re-subdivided, which is expensive if the control mesh is very large. Once the required portions of the
subdivided coefficients have been updated, the system is then able to reevaluate the scalar function, extract
an iso-surface, and update the display.

5.6 Iso-Surface Extraction

Once the subdivided scalar field is defined, it becomes possible to determine the geometry of the implicit
surfaces. Since the mesh may be deformed arbitrarily, we employ the Marching Tetrahedra algorithm [31]
to extract iso-surfaces. When the working space is topologically regular, cells in the subdivided space are
divided into six tetrahedra. For non-regular working spaces, the hexahedra can be divided into 24 tetrahedra.
For performance reasons, we make the simplifying assumption that the subdivided cells are not deformed by
the user to such an extent that they become self-intersecting. In practice, very large deformations are required
to cause self-intersections, because the movement of the refined mesh is constrained by the subdivision
structure.

It is important to note that, based on the geometry of the control mesh, the subdivided vertices may
be spaced at non-unit intervals or distributed very irregularly. In fact, there may be large gaps between
adjacent vertices in the subdivided mesh. However, since we use a subdivision algorithm that produces a
smooth scalar field – regardless of its distribution – we can always guarantee that the implicit surface will
be smooth in the limit of subdivision. Moreover, our approach does not require resampling onto a regular
voxel raster, which would introduce error. Although the process of iso-surface extraction does employ linear
interpolation along tetrahedron edges, which has the potential to introduce sampling artifacts, we have found
that two levels of volumetric subdivision suffice to approximate the smooth limit iso-surface and to avoid
noticeable artifacts.
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(a) (b) (c) (d)

Figure 7: Control coefficients are assigned values on a 20 × 20 × 20 grid to represent a sphere of radius 15
and are then scaled by a factor of 10. (a-b) Our algorithm after 1 and 2 levels of subdivision, respectively.
(c-d) Linear interpolation applied at the same resolution grids.

Since traditional voxel-based sculpting systems [1, 25, 34] employ tri-linear interpolation, they exhibit
aliasing when the voxel grid is scaled or deformed. Aliasing must then be eliminated by filtering most or all
of the voxel grid. We avoid this problem by using what is essentially a higher-order interpolation algorithm
(i.e., C1 subdivision). Surfaces represented in our implicit subdivision solid approach will remain smooth
even if the control mesh is arbitrarily scaled or even deformed. Figure 7 shows an example in which our
algorithm produces a smooth surface even after scaling, whereas linear interpolation fails to improve surface
quality even with denser grids.

(a) (b) (c) (d) (e)

Figure 8: (a-c) Surfaces created with CSG operators in our implicit subdivision solid approach. (d-e) Objects
created by curve sweeping – addition and subtraction of material, respectively.

5.6.1 Vertex Normal Estimation

A key aspect of iso-surface extraction is normal vector computation. With traditional polynomial-based
implicit surfaces, it may be possible to compute normals analytically. In voxel-based approaches, the inverse
normalized gradient is usually employed as an approximation of the normal and can be computed by central
differences. Since a subdivided mesh in our framework may exhibit non-regular geometry and topology,
central differences cannot be used. While local resampling and subsequent central difference computation
could be employed, we have devised the following simpler method that works well in practice.

Suppose we are computing the gradient for a subdivided vertex d, located at (x, y, z), whose scalar
coefficient is ϕ. Since we use the Marching Tetrahedra algorithm, we compute gradients only at subdivided
vertices. Therefore, we do not need to estimate gradients at the subdivided cells, faces or edges. Let di

indicate the position of a neighboring vertex and ϕi its corresponding scalar coefficient. The components of



DigitalSculpture: A Subdivision-based Approach to Interactive Implicit Surface Modeling 13

the (un-normalized) gradient ∇d = (gx, gy, gz) at d can be approximated by

gx =
N∑

i=1

(ϕ − ϕi)
dx − di,x

(|dx − di,x|)n

gy =
N∑

i=1

(ϕ − ϕi)
dy − di,y

(|dy − di,y|)n ,

gz =

N∑

i=1

(ϕ − ϕi)
dz − di,z

(|dz − di,z|)n ,

where n ≥ 1, N is the number of vertices adjacent to d, and dx indicates the x component of d. When n = 1,
this formulation constitutes a linear, radial-basis approach and provides a good estimate of the gradient
at a point. It can be shown that for regularly distributed points, this formulation – after normalization –
reproduces the central differences algorithm for computing gradients over rectilinear voxel grids.

During polygonization of the iso-surface, edges of the tetrahedra are split to create triangle vertices. The
gradient of the vertex introduced at some position e along that edge can be approximated by

∇e = (1 − α)∇d0 + α∇d1, (13)

where d0 and d1 are the end-points of the edge. The parameter α is also computed during polygonization
and is given by

α =
` − ϕ0

ϕ1 − ϕ0

, (14)

for the iso-level `. The values ϕ0 and ϕ1 indicate the scalar coefficients at the two end-points. The vertex’s
normal vector can then be approximated by −∇e/|∇e|.

6 The DigitalSculpture Environment

6.1 Sculpting Functionality

We demonstrate the potential of our new surface modeling approach by incorporating implicit subdivision
solids into a new sculpting environment we have developed called DigitalSculpture. The sculpting system
features traditional CSG sculpting tools that permit the addition and subtraction of material in the shape of a
sphere, cylinder, rectangular box, torus, cylinder or cone. It also features local and large-scale deformation
tools, a local sanding tool, copy-and-paste functionality, a spray painting tool, and functionality to import
polygonal and volumetric data-sets. The capabilities of our system are summarized in Table 1. The user
interacts with the system by employing a standard 2D mouse with the dominant hand and a 3D input device
with the other. The latter is used to specify the (x, y, z) position of the sculpting tools. Tool parameters are
specified in the GUI. Local subdivision and iso-surface extraction are performed at run-time.

6.2 Example Digital Sculptures

We have created numerous virtual sculptures with our new implicit solid sculpting environment. Several
sophisticated examples can be found in Figure 1 and throughout the remainder of the paper. Figures 8a-
d depict several objects modeled with only CSG operators. An example of curve sweeping is given in
Figure 8e. To perform curve sweeping, the user draws a spatial curve and specifies the thickness. The system
samples the curve and adds a sphere at each sample location. Figure 9 shows example applications of the
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CSG Tools Union and subtraction of spheres, boxes,
cylinders, cones, tori

Local Deformations Inflation, deflation, sanding
Large Deformations FFD via control point manipulation

Other Functionality Spray painting, curve sweeping,
copy-and-paste, model import

Table 1: Sculpting functionality offered in our DigitalSculpture environment.

inflation and deflation tools. As can be seen in the figure, the deflation tool provides a convenient method for
rounding, denting, and making bulges. The sanding tool, used extensively in the creature in Figure 1, can be
employed to smooth bumps and ridges. In Figure 10 we performed FFD of an embedded sculpture by using a
cylindrical control mesh. The top portion was given a 90◦ clockwise turn. The cylindrical mesh was used for
FFD only, while the underlying object was defined over a regular, rectangular mesh. Figure 11 shows a mug
sculpted over a non-regular working space that contains a hole. The bottom of the mug was deformed with
a localized FFD mesh. Figure 12 shows several other models sculpted over irregular volumetric domains.

(a) (b)

Figure 9: Virtual sculptures created by the inflation and deflation tools. (a) Wood-turning simulated by
deforming cylinders. Surface textures were applied afterwards. (b) A rectangular solid showing rounded
edges, bulges, dents, and depressions created by the deformation tools.

Figure 10: The sculpture depicted in Figure 8(b) undergoes FFD-based twisting with a non-regular, cylin-
drical subdivision mesh.
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Figure 11: The top portion of a mug sculpted over a non-regular working space is deformed with a local
FFD mesh. Note that the mug’s bottom portion remains unchanged.

Figure 12: Sculptures defined over irregular working spaces. Even the cylindrical working space on the left
contains several extraordinary edges and vertices.

(a) (b)

Figure 13: (a) Polygonal mesh converted into a distance field and incorporated into our sculpting environ-
ment. (b) Voxelized Apache helicopter model imported into our system.

6.3 Import of Existing Models

Existing polygonal and voxel-based models can be imported into DigitalSculpture by converting them into
distance fields. Some examples can be seen in Figure 13. Polygonal meshes are be voxelized at a resolution
in accordance with user requirement [9]. Voxelized data-sets may be resampled if they are too large to be
feasibly stored in memory and manipulated in real-time. The voxel densities are then rescaled and thereby
treated as approximate signed distances. Note that we typically pad an imported model with two layers of
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voxels in order to ensure that there is sufficient support for the subdivision masks. The distance field must
be scaled and truncated in order to bring each control coefficients into the range [−1, +1]. For more details
about distance field construction from polygonal meshes see [14, 33, 37].

6.4 Data Structures

For a topologically rectangular solid control mesh, all data can be stored in matrices and multi-dimensional
arrays. The local subdivision matrices are represented with a sparse matrix storage scheme to reduce sub-
division time. When the control mesh is non-regular, we are required to store the connectivity information.
For this purpose we employ a modified version of the radial-edge data structure [22, 35], which is a gen-
eralization of winged-edge data structure to arbitrary manifolds. Our implementation consists of four lists
to store the cells, faces, edges and vertices. Each topological entity (cell, face, edge, or vertex) contains
several short lists that represent its local topological neighborhood. For instance, in our implementation,
a face object consists of an ordered list of directed edges and a pair of pointers to the cells that share the
face. Auxiliary information pertaining to the subdivision scheme is also stored, including a flag indicating
whether an entity is in the interior or on the boundary, the coordinate positions of the vertices, the scalar
coefficients, etc.

6.5 Hardware Configuration

The DigitalSculpture environment features a dual-machine hardware configuration and uses message pass-
ing to facilitate inter-process communication. A photograph of the system in use is given in Figure 14. The
Haptics Server machine process manages a Sensable Technologies PHANToM and sends the (x, y, z) cur-
sor position of the PHANToM to the Sculpting Station machine. The PHANToM is physically connected
to the Server. The Sculpting Station acts as a client to the Haptics Server by polling the Server periodi-
cally for the 3D position of the PHANToM. The 3D cursor provided by the PHANToM is used to position
the sculpting tools that can be activated by the user. Tool interaction, rendering, and all other functional-
ity of DigitalSculpture runs on the Sculpting Station, which, in our implementation, is a desktop PC with
a 2.2 GHz CPU and 1.0 GB RAM. The Haptics Server and Sculpting Station were implemented in C++.
OpenGL is used for run-time rendering virtual sculptures. POV-Ray (www.povray.org) was used for the
most of the high-quality renderings shown in the paper.

7 Conclusions and Future Work

We have developed a new technique for representing, modifying and interacting with implicit surfaces. Our
approach is to employ implicit subdivision solids over arbitrary 3D irregular grids, which uniquely extends
concepts and generalizes techniques from implicit surfaces, recursive subdivision algorithms, and volumet-
ric sculpting. The new interpolatory solid scheme is at least C1 continuous for a wide range of control
meshes and can be applied over arbitrary hexahedral meshes. Our implicit model offers the unique advan-
tage of supporting a wide variety of shape design techniques in a single, integrated framework. Furthermore,
implicit surfaces designed in our approach can be evaluated and polygonized rapidly, which makes our
model useful in real-time sculpting systems. We have applied our new framework in an interactive sculpting
environment called DigitalSculpture that supports CSG operations and local and large-scale deformation
techniques, and that can import existing polygonal and voxel data-sets.

Although our approach is very powerful, it exhibits several limitations that we are confident can be
overcome with additional effort. Since underlying scalar field is ultimately a discrete representation, our
approach occasionally exhibits some of the undesirable behavior of traditional voxel models. For instance,
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Figure 14: The user interface of the DigitalSculpture system consists of a Sensable Technologies PHAN-
ToM, standard mouse and on-screen GUI controls.

aliasing can arise in iso-surfaces under certain circumstances if the working space is not of sufficient reso-
lution to represent a given feature. Flat surfaces not oriented perpendicular to one of the major axes require
special care (i.e., an extra filtering step) to avoid staircasing artifacts. We envision that a local refinement
algorithm can be used to overcome such difficulties, although the underlying subdivision scheme must be
modified to accommodate such an algorithm. A local refinement algorithm would also help to reduce the
memory needs of volumetric subdivision algorithms, whose storage requirements grow quickly when ap-
plied over very large meshes. This problem could be solved or at least lessened dramatically via local
subdivision. Last, although we can almost represent sharp features, a hierarchical or wavelet-based decom-
position technique would be necessary to represent hard edges and corners exactly.

Future research involving the new interpolatory scheme for subdivision solids includes application to
other domains such as volume visualization, data representation and compression, and dynamic simulation.
The local, adaptive, subdivision (refinement) algorithm could find wide application, but would require sig-
nificant changes to the subdivision scheme and data structures. We are also currently investigating other
volumetric subdivision schemes and their analysis. We plan to associate other quantities with our implicit
subdivision solid framework, especially physical properties, and use our geometric model in finite element
simulation and analysis. We envision a number of extensions to the DigitalSculpture system, including
multi-resolution sculpting, incorporation of an algorithm to handle local refinement and T-vertices, auto-
matic construction of control meshes from volumetric data, and the incorporation of haptic I/O.

References

[1] J. A. Baerentzen and N. J. Christensen. Volume sculpting using the level-set method. In Proceedings
of the 2002 International Conference on Shape Modeling and Applications, pages 175–182, 2002.

[2] C. Bajaj, S. Shaefer, J. Warren, and G. Xu. A subdivision scheme for hexahedral meshes. The Visual
Computer, 18(5–6):343–356, 2002.

[3] M. Bertram. Biorthogonal wavelets for subdivision volumes. In Proceedings of the Seventh ACM
Symposium on Solid Modeling and Applications, pages 72–82, June 2002.



DigitalSculpture: A Subdivision-based Approach to Interactive Implicit Surface Modeling 18

[4] J. Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, 1997.

[5] M.-P. Cani and S. Hornus. Subdivision curve primitives: A new solution for interactive implicit mod-
eling. In Shape Modelling International, pages 82–88, May 2001.

[6] Y. Chang, K. T. McDonnell, and H. Qin. A new solid subdivision scheme based on Box splines. In
Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications (Solid Modeling
2002), pages 226–233, June 2002.

[7] Y. Chang, K. T. McDonnell, and H. Qin. An interpolatory subdivision for volumetric models over
simplicial complexes. In Proceedings of the International Conference on Shape Modeling and Appli-
cations (SMI 2003), pages 143–152, Seoul, Korea, May 2003.

[8] S. Coquillart. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In
Computer Graphics (SIGGRAPH 90 Proceedings), pages 187–196, Aug. 1990.

[9] F. Dachille IX and A. Kaufman. Incremental triangle voxelization. In Proceedings of Graphics Inter-
face 2000, pages 205–212, May 2000.

[10] G. Dewaele and M.-P. Cani. Interactive global and local deformations for virtual clay. In Proceedings
of the 11th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2003), pages
131–140, 2003.

[11] N. Dyn, D. Levin, and J. Gregory. A four-point interpolatory subdivision scheme for curve design.
Computer Aided Geometric Design, 4(4):257–268, 1987.

[12] E. Ferley, M.-P. Cani, and J.-D. Gascuel. Practical volumetric sculpting. The Visual Computer,
16(7):469–480, 2000.

[13] E. Ferley, M.-P. Cani, and J.-D. Gascuel. Resolution adaptive volume sculpting. Graphical Models
(Special Issue on Volume Modeling), 63:459–478, Mar. 2002.

[14] S. F. Frisken-Gibson. Using distance maps for accurate surface reconstruction in sampled volumes. In
Proceedings of the 1998 IEEE Symposium on Volume Visualization, pages 23–30, 1998.

[15] J. Hua and H. Qin. Haptic sculpting of volumetric implicit functions. In Proceedings of the Ninth
Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2001), pages 254–264,
Tokyo, Japan, Oct. 2001.

[16] T. Igarashi, S. Matsuoka, , and H. Tanaka. Teddy: a sketching interface for 3D freeform design. In
Proceedings of ACM SIGGRAPH 99, pages 409–416, 1999.

[17] L. Linsen, V. Pascucci, M. A. Duchaineau, B. Hamann, and K. I. Joy. Hierarchical representation of
time-varying volume data with 4

√
2 subdivision and quadrilinear B-spline wavelets. In Proceedings of

Tenth Pacific Conference on Computer Graphics and Applications, pages 346–355, 2002.

[18] R. MacCracken and K. I. Joy. Free-form deformations with lattices of arbitrary topology. In Computer
Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, pages 181–188, Aug. 1996.

[19] K. T. McDonnell, Y. Chang, and H. Qin. Interpolatory, solid subdivision of unstructured hexahedral
meshes. The Visual Computer, 2004. To appear.



DigitalSculpture: A Subdivision-based Approach to Interactive Implicit Surface Modeling 19

[20] K. T. McDonnell, H. Qin, and R. A. Wlodarczyk. Virtual clay: A real-time sculpting system with
haptic toolkits. In Proceedings of 2001 ACM Symposium on Interactive 3D Graphics, pages 179–190,
Research Triangle Park, North Carolina, Mar. 2001.

[21] K. Museth, D. E. Breen, R. T. Whitaker, and A. Barr. Level set surface editing operators. In Computer
Graphics (Proceedings of SIGGRAPH 2002), pages 330–338, July 2002.

[22] M. J. Muuss and L. A. Butler. Combinatorial solid geometry, boundary representations, and n-manifold
geometry. In D. F. Rogers and R. A. Earnshaw, editors, State of the Art in Computer Graphics:
Visualization and Modeling, pages 185–223. Springer-Verlag, 1991.

[23] V. Pascucci and C. Bajaj. Time critical isosurface refinement and smoothing. In Proceedings of the
2000 IEEE Symposium on Volume Visualization, pages 33–42, 2000.

[24] A. Pasko, V. Savchenko, and A. Sourin. Synthetic carving using implicit surface primitives. Computer-
Aided Design, 33(5):379–388, April 2001.

[25] R. N. Perry and S. F. Frisken. Kizamu: A system for sculpting digital characters. In Computer Graphics
(Proceedings of SIGGRAPH 2001), pages 47–56, 2001.

[26] A. Raviv and G. Elber. Three dimensional freeform sculpting via zero sets of scalar trivariate functions.
Computer Aided Design, 32(8/9):513–526, 2000.

[27] P. Reuter, I. Tobor, C. Schlick, and S. Dedieu. Point-based modelling and rendering using radial basis
functions. In Proceedings of ACM GRAPHITE 2003, pages 111–118, 2003.

[28] B. Schmitt, A. Pasko, and V. Savchenko. Extended space mapping with bezier patches and volumes. In
Proceedings of Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Workshop, pages 25–31, 1999.

[29] B. Schmitt, A. Pasko, and C. Schlick. Constructive modeling of FRep solids using spline volumes. In
Proceedings of the sixth ACM symposium on Solid modeling and applications, pages 321–322, 2001.

[30] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. In Computer
Graphics (SIGGRAPH 86 Proceedings), volume 20, pages 151–160, Aug. 1986.

[31] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering. In Computer
Graphics (San Diego Workshop on Volume Visualization), pages 63–70, November 1990.

[32] G. Turk, H. Q. Dinh, J. O’Brien, and G. Yngve. Implicit surfaces that interpolate. In Proceedings of
Shape Modelling International 2001, pages 62–71, 2001.
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