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Even though there has been significant growth in solid and volumetric representations,

rapid advances in manufacturing technology, imaging technology, and material science

in recent years pose new challenges which have not been fully resolved by the current

representation techniques.

In this dissertation, we address the challenges by proposing a novel framework for solid

model representation based on subdivision process. We call our approach Multiresolution

Solid Objects, or MSO. Within the MSO framework, we represent volumetric objects by

a series of new solid subdivision schemes. Subdivision solids share many benefits of sub-

division surfaces, yet they have the complexity and the mathematical challenges that are

unique to the high dimensional cases.

This dissertation follows our development of MSO framework. We begin with the dis-

cussion of general polyhedral mesh structures in 3D space and develop a new structured
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mesh in 3D based on simplicial complexes, called Octet-truss. The dissertation contin-

ues with the derivation of new solid subdivision schemes over the regular meshes, and the

generalization to arbitrary tetrahedral and hexahedral meshes. We present (i) a box-spline

based approximate solid scheme; (ii) an interpolatory solid scheme over arbitrary complex

meshes; (iii) an interpolatory solid scheme over arbitrary hexahedral meshes; and finally

(iv) a unified subdivision schemes for multidimensional objects based on box-splines. Each

scheme is derived from volumetric splines, a weighted perturbation of linear interpolation,

and the Lagrange interpolating polynomials. The derivation is followed by the proving of

the convergence and smoothness of the schemes using well-established mathematical tech-

niques. In rare cases, we provide the empirical data which highly suggest the convergence

and the smoothness of the schemes.

In addition to the theoretical contributions, this dissertation presents numerous practical

implementations to emphasize the benefits of our framework. These include arbitrary shape

design, heterogeneous material modeling, free-form design, non-manifold object repre-

sentation, boundary and feature representation and free-form deformation. Finally, we

describe few new applications including high quality partitioning and fitting, and feature-

preserving volume filtering, which lead toward a wide-range of applications in the future.

iv



For my parents, my daughter, Erin and my wife, Hyunjoo



Contents

List of Tables xi

List of Figures xii

List of Algorithms xviii

Acknowledgments xix

Publications xxi

Notation 1

1 Introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2 Background Review 12

2.1 Volume Representations in Solid Modeling . . . . . . . . . . . . . . . . .12

2.1.1 Implicit Function Representations . . . . . . . . . . . . . . . . . .13

2.1.2 Parametric Representations . . . . . . . . . . . . . . . . . . . . . .13

vi



2.1.3 Cell Decomposition . . . . . . . . . . . . . . . . . . . . . . . . .15

2.2 Subdivision Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.2.1 Stationary Subdivision Curves . . . . . . . . . . . . . . . . . . . .16

2.2.2 Stationary Subdivision Surfaces . . . . . . . . . . . . . . . . . . .19

2.2.3 Variational Subdivision Schemes . . . . . . . . . . . . . . . . . . .26

2.2.4 High-Dimensional Subdivision Schemes . . . . . . . . . . . . . .29

2.2.5 Analysis of Subdivision Schemes . . . . . . . . . . . . . . . . . .32

3 Subdivision Meshes 36

3.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . .36

3.2 Tiling of The Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3.3 Regular and Quasi-Regular Structured Meshes . . . . . . . . . . . . . . . .40

3.4 Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

4 Box-spline based Approximate Solid Subdivision Scheme 45

4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . .46

4.2 Properties of Box Splines . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.2.2 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . .48

4.2.3 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . .49

4.3 Generating Functions for Subdivision . . . . . . . . . . . . . . . . . . . .52

4.3.1 Generating Function Method . . . . . . . . . . . . . . . . . . . . .52

4.3.2 Generating Functions for Box-spline Subdivision . . . . . . . . . .54

4.4 Derivation of Solid Subdivision Scheme . . . . . . . . . . . . . . . . . . .55

4.4.1 Double Directional Box Splines . . . . . . . . . . . . . . . . . . .55

vii



4.4.2 Regular Subdivision Masks . . . . . . . . . . . . . . . . . . . . .56

4.4.3 Regular Subdivision Rules . . . . . . . . . . . . . . . . . . . . . .60

4.5 Generalization of Solid Subdivision Scheme . . . . . . . . . . . . . . . . .62

4.5.1 Extraordinary Subdivision Rules . . . . . . . . . . . . . . . . . . .63

4.5.2 Boundary Representation . . . . . . . . . . . . . . . . . . . . . . .64

4.6 Analysis of Arbitrary Topology . . . . . . . . . . . . . . . . . . . . . . . .64

4.6.1 Subdivision Matrix . . . . . . . . . . . . . . . . . . . . . . . . . .67

4.6.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

4.6.3 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .72

4.6.4 Characteristic Map . . . . . . . . . . . . . . . . . . . . . . . . . .76

4.7 Averaged Subdivision Scheme . . . . . . . . . . . . . . . . . . . . . . . .79

4.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

4.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

5 Interpolatory Solid Subdivision Scheme over Simplicial Complexes 88

5.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . .88

5.2 Derivation of Solid Subdivision Scheme . . . . . . . . . . . . . . . . . . .89

5.3 Analysis of Subdivision Scheme . . . . . . . . . . . . . . . . . . . . . . .93

5.3.1 Regular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

5.3.2 Tension Control . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

5.3.3 Extraordinary Cases . . . . . . . . . . . . . . . . . . . . . . . . .97

6 Multi-dimensional Non-manifold Subdivision Framework 100

6.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . .100

6.2 Simplicial Complex Domain . . . . . . . . . . . . . . . . . . . . . . . . .101

viii



6.2.1 Set Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

6.2.2 Complex Decomposition . . . . . . . . . . . . . . . . . . . . . . .103

6.2.3 Boundary Simplex . . . . . . . . . . . . . . . . . . . . . . . . . .104

6.2.4 Non-manifold Simplex . . . . . . . . . . . . . . . . . . . . . . . .104

6.3 Unified Subdivision Scheme . . . . . . . . . . . . . . . . . . . . . . . . .106

6.3.1 Regular Subdivision Rules . . . . . . . . . . . . . . . . . . . . . .107

6.3.2 Extraordinary Subdivision Rules . . . . . . . . . . . . . . . . . . .108

6.3.3 Boundary and Non-manifold Rules . . . . . . . . . . . . . . . . .110

6.4 Singularity and Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . .115

6.4.1 Singularity Representation . . . . . . . . . . . . . . . . . . . . . .115

6.4.2 Local Adaptive Refinement . . . . . . . . . . . . . . . . . . . . .116

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

6.5.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

6.5.2 Complex Construction . . . . . . . . . . . . . . . . . . . . . . . .118

6.5.3 Subdivision Process . . . . . . . . . . . . . . . . . . . . . . . . .120

7 Applications of Multiresolution Solid Objects 122

7.1 Direct Shape Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

7.1.1 Box-spline based Approximate Solid Subdivision Scheme . . . . .123

7.1.2 Interpolatory Solid Subdivision Scheme over Simplicial Complexes124

7.1.3 Multi-dimensional Non-manifold Subdivision Framework . . . . .125

7.2 Heterogeneous Material Modeling . . . . . . . . . . . . . . . . . . . . . .129

7.3 Implicit Solid Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

7.4 Free-form Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

7.5 High Quality Surface Partitioning and Fitting for Subdivision . . . . . . . .138

ix



7.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . .140

7.5.2 Feature Searching and Partitioning . . . . . . . . . . . . . . . . . .141

7.5.3 Conformal Parameterization . . . . . . . . . . . . . . . . . . . . .143

7.5.4 Boundary and Surface Fitting . . . . . . . . . . . . . . . . . . . .144

7.6 Volume Data Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

7.6.1 Trivariate Box Splines . . . . . . . . . . . . . . . . . . . . . . . .145

7.6.2 Gradient Computation using Linear Regression . . . . . . . . . . .146

7.6.3 Kernel Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .146

8 Conclusion 147

Bibliography 149

A Subdivision Coefficients for Box-Spline Based Subdivision Scheme 161

B Samples of Solid Subdivision Matrices 166

B.1 Extraordinary Vertex Subdivision Matrix . . . . . . . . . . . . . . . . . . .166

B.2 Extraordinary Edge Subdivision Matrix . . . . . . . . . . . . . . . . . . .166

C Interpolatory Solid Subdivision Scheme over Unstructured Hexahedral

Meshes 171

C.1 Derivation of Subdivision Scheme . . . . . . . . . . . . . . . . . . . . . .171

C.1.1 Rules for Meshes of Regular Topology . . . . . . . . . . . . . . .171

C.1.2 Rules for Meshes of Non-Regular Topology . . . . . . . . . . . . .173

C.2 Analysis of Subdivision Scheme . . . . . . . . . . . . . . . . . . . . . . .177

C.2.1 Convergence and Continuity for Meshes of Regular Topology . . .177

C.2.2 Continuity for Meshes of Non-Regular Topology . . . . . . . . . .181

x



List of Tables

4.1 Statistics on the valence numbers of the selected arbitrary meshes . . . . .75

4.2 Eigenvalues for a selection of the extraordinary vertex cases. . . . . . . . .77

4.3 Eigenvalues for a selection of the extraordinary edge cases. . . . . . . . . .77

7.1 Examples of running times for the multi-dimensional subdivision framework.129

C.1 Eigenvalues for a selection of the extraordinary vertex cases. . . . . . . . .183

C.2 Eigenvalues for a selection of the extraordinary edge cases. . . . . . . . . .183

xi



List of Figures

1.1 Conceptual hierarchy of the dissertation research. . . . . . . . . . . . . . .6

1.2 3D Systems stereolithography machine. . . . . . . . . . . . . . . . . . . .11

1.3 Functionally graded microstructures. . . . . . . . . . . . . . . . . . . . . .11

2.1 A logarithmic curve from the Golden Rectangle. . . . . . . . . . . . . . . .16

2.2 An example of a curve generated by the Chaikin’s algorithm. . . . . . . . .16

2.3 An example of the different topologies in 1-D. . . . . . . . . . . . . . . . .18

2.4 An example of the Catmull-Clark subdivision surface. . . . . . . . . . . . .19

2.5 An example of the Doo-Sabin subdivision surface. . . . . . . . . . . . . . .21

2.6 An example of the Loop subdivision surface. . . . . . . . . . . . . . . . .22

2.7 The subdivision rules for the 4-8 and the
√

3-subdivision. . . . . . . . . . . 24

2.8 The subdivision masks for the Butterfly scheme. . . . . . . . . . . . . . . .25

2.9 An example of a variational subdivision scheme. . . . . . . . . . . . . . .29

2.10 A simple example of the MacCracken and Joy’s scheme. . . . . . . . . . .30

2.11 The MCLA scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

2.12 3-D Plotting of the functionf : (r, t)→ (cos 3t, r sin 3t, r2 sin t). . . . . . . 34

3.1 The 11 isohedral (Laves) tilings of 2-D space. . . . . . . . . . . . . . . . .38

3.2 The Archimedean tilings, dual to Laves. . . . . . . . . . . . . . . . . . . .39

xii



3.3 Examples of polyhedra splits. . . . . . . . . . . . . . . . . . . . . . . . . .44

4.1 Box spline as a projection. . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.2 The subdivision coefficients for Chaikin’s algorithm. . . . . . . . . . . . .54

4.3 The supports of the box splines and their subdivision. . . . . . . . . . . . .56

4.4 The subdivision coefficients of the Loop’s scheme . . . . . . . . . . . . . .57

4.5 The projected image of 8-cube by the directional matrixΞ2. . . . . . . . . . 58

4.6 The projected image of the hypercube. . . . . . . . . . . . . . . . . . . . .58

4.7 The decomposition of the hypercube image. . . . . . . . . . . . . . . . . .59

4.8 The regular subdivision rules for the box-spline based solid subdivision (a).62

4.9 The regular subdivision rules for the box-spline based solid subdivision (b).63

4.10 The extraordinary subdivision rules for the box-spline based solid subdivi-

sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

4.11 The boundary subdivision rules for the box-spline based solid subdivision. .65

4.12 The basis function of the subdivision algorithm on the regular mesh. . . . .66

4.13 The invariant neighborhood of an extraordinary vertex and their indices. . .67

4.14 The invariant neighborhood of an extraordinary edge and their indices. . . .70

4.15 An example of the face-to-face case. . . . . . . . . . . . . . . . . . . . . .71

4.16 The different neighbors of the edge between faces by the proper choices of

the major diagonals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

4.17 Evaluation of the face-to-face case. . . . . . . . . . . . . . . . . . . . . . .72

4.18 A selection of arbitrary tetrahedral meshes. . . . . . . . . . . . . . . . . .74

4.19 Histogram of the valence numbers of the selected arbitrary meshes. . . . . .75

4.20 Two different choices of the major diagonals for the extraordinary edge

with the valence 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

xiii



4.21 The control net of the characteristic map of the extraordinary vertex with

the valence 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

4.22 Control nets for a selection of the characteristic maps of the extraordinary

vertex with the valences from 7 to 22. . . . . . . . . . . . . . . . . . . . .79

4.23 Control nets for a selection of the characteristic maps of the extraordinary

edges with the valences from 4 to 9. . . . . . . . . . . . . . . . . . . . . .80

4.24 The characteristic maps for the extrarodinary edges with the valences 9 and

11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

4.25 The regular rules for the averaged subdivision scheme. . . . . . . . . . . .81

4.26 The flow chart of our subdivision scheme implementation. . . . . . . . . .84

4.27 Solid subdivision models with non-trivial topology. . . . . . . . . . . . . .86

4.28 A torus model that consists of a solid and a surface. . . . . . . . . . . . . .86

4.29 A cylinderical model with heterogeneous material. . . . . . . . . . . . . .87

4.30 A panel model with simulated tension force. . . . . . . . . . . . . . . . . .87

5.1 Edge neighbors in general cases. . . . . . . . . . . . . . . . . . . . . . . .91

5.2 The top-view of the edge and cell neighbors. . . . . . . . . . . . . . . . . .92

5.3 The edge and cell neighbors. . . . . . . . . . . . . . . . . . . . . . . . . .92

5.4 Tension control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

5.5 Control nets for rings of characteristic maps for our scheme. . . . . . . . .99

6.1 Examples of simplices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

6.2 The subsimplices of a 3-simplex. . . . . . . . . . . . . . . . . . . . . . . .103

6.3 Complex decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . .104

6.4 Examples of complexes containing non-manifold simplices. . . . . . . . .105

6.5 Regular subdivision rules. . . . . . . . . . . . . . . . . . . . . . . . . . . .108

xiv



6.6 Regular 3-simplex subdivision rules. . . . . . . . . . . . . . . . . . . . . .109

6.7 Modifiedk-simplex subdivision rules. . . . . . . . . . . . . . . . . . . . .110

6.8 Examples of manifolds with boundary. . . . . . . . . . . . . . . . . . . . .110

6.9 The 1-ring neighbors with the relieved topology condition. . . . . . . . . .111

6.10 Examples of non-manifold cases. . . . . . . . . . . . . . . . . . . . . . . .111

6.11 Type 3 non-manifold rules. . . . . . . . . . . . . . . . . . . . . . . . . . .113

6.12 Comparison between the non-manifold rules. . . . . . . . . . . . . . . . .114

6.13 Examples of singularities in manifold. . . . . . . . . . . . . . . . . . . . .117

6.14 Local refinement rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

7.1 Our subdivision algorithm can handle not only simple models, but also

topologically complex models. . . . . . . . . . . . . . . . . . . . . . . . .123

7.2 More examples of topologically complex models. . . . . . . . . . . . . . .123

7.3 Free-form object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

7.4 Direct model manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . .124

7.5 Examples of models with arbitrary topology and their manipulations. . . . .124

7.6 Existing tetrahedral models can be subdivided using our scheme to acquire

the finer mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

7.7 SMI logo and its cross-section created using our interpolatory subdivision

scheme for solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

7.8 An embedded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

7.9 A knot-shaped model that has complex topology. . . . . . . . . . . . . . .127

7.10 A simple design for space shuttle using our subdivision tools. . . . . . . . .127

7.11 The scheme can be used to design a practical model such as a spiral. . . . .127

7.12 A torus model with non-manifold topology. . . . . . . . . . . . . . . . . .128

xv



7.13 A segmented ring model. . . . . . . . . . . . . . . . . . . . . . . . . . . .128

7.14 A direct manipulation on control point. . . . . . . . . . . . . . . . . . . . .128

7.15 A screw model by the combination of 2- and 3-manifolds. . . . . . . . . . .130

7.16 A valve model with a spring. . . . . . . . . . . . . . . . . . . . . . . . . .130

7.17 The bow and the part of the hull from a ship model. . . . . . . . . . . . . .130

7.18 A model of a mechanical part with the complex topology. . . . . . . . . . .131

7.19 Insect characters for computer animation. . . . . . . . . . . . . . . . . . .131

7.20 Not only can subdivision solids represent geometry, but they can also be

used to interpolate other data over 3D space. . . . . . . . . . . . . . . . . .133

7.21 Smooth distribution of densities inside a subdivision solid. . . . . . . . . .133

7.22 A model with a material property represented by colors. . . . . . . . . . . .133

7.23 Various solid models with material properties. . . . . . . . . . . . . . . . .134

7.24 A material property representation. . . . . . . . . . . . . . . . . . . . . . .134

7.25 Virtual sculptures created in our DigitalSculpture modeling environment. .135

7.26 Surfaces created with CSG operations and curve sweeping in our implicit

solid approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

7.27 Barycentric coordinates and an octahedron split. . . . . . . . . . . . . . . .137

7.28 Free-form deformation of a car model. . . . . . . . . . . . . . . . . . . . .138

7.29 An example of free-form deformation of an industrial filter block model. . .138

7.30 A mesh with non-trivial topology. . . . . . . . . . . . . . . . . . . . . . .139

7.31 Localized free-form deformation. . . . . . . . . . . . . . . . . . . . . . . .139

7.32 Feature Searching and Partitioning Procedure. . . . . . . . . . . . . . . . .143

A.1 The subdivision coefficients of the box-spline based solid subdivisionare

embedded in the part of the octet-truss regular structured mesh. . . . . . . .161

xvi



A.2 The vertex mask for the box-spline based solid subdivision. . . . . . . . . .162

A.3 An edge mask for the box-spline based solid subdivision (a). . . . . . . . .162

A.4 An edge mask for the box-spline based solid subdivision (b). . . . . . . . .163

A.5 An edge mask for the box-spline based solid subdivision (c). . . . . . . . .163

A.6 An edge mask for the box-spline based solid subdivision (d). . . . . . . . .164

A.7 An edge mask for the box-spline based solid subdivision (e). . . . . . . . .164

A.8 An edge mask for the box-spline based solid subdivision (f). . . . . . . . .165

A.9 The cell masks for the box-spline based solid subdivision. . . . . . . . . . .165

B.1 The subdivision matrix for an extraordinary vertex with the valence 5. . . .168

B.2 The subdivision matrix for an extraordinary edge with the valence 4 (a). . .169

B.3 The subdivision matrix for an extraordinary edge with the valence 4 (b). . .170

C.1 Cell-point mask for our new subdivision scheme. . . . . . . . . . . . . . .172

C.2 Face-point mask for our new subdivision scheme. . . . . . . . . . . . . . .173

C.3 Edge-point mask for our new subdivision scheme. . . . . . . . . . . . . . .173

C.4 Face-point mask for extraordinary vertices and edges. . . . . . . . . . . . .175

C.5 Edge-point masks for non-regular topological settings. . . . . . . . . . . .177

C.6 Renderings of the subdivision algorithm’s basis function. . . . . . . . . . .178

C.7 A graph of||Dk||∞ with respect to the weight valuew. . . . . . . . . . . .180

C.8 A selection of non-regular topology meshes we analyzed in order to prove

numerically that our scheme isC1 continuous. . . . . . . . . . . . . . . . .182

xvii



List of Algorithms

4.1 OCTET-SUBDIVISION. . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

4.2 MAJOR-DIAGONAL -CHOOSE. . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 MULTI -DIMENSIONAL-SUBDIVISION. . . . . . . . . . . . . . . . . . . .118

6.2 COMPLEX-CONSTRUCT. . . . . . . . . . . . . . . . . . . . . . . . . . . .119

6.3 FIND-BOUNDARY-AND-NON-MANIFOLD . . . . . . . . . . . . . . . . . .119

6.4 FIND-TYPE-THREE-NON-MANIFOLD . . . . . . . . . . . . . . . . . . . .120

6.5 NEW-VERTEX-POINTS. . . . . . . . . . . . . . . . . . . . . . . . . . . .121

6.6 SPLIT-SIMPLEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

xviii



Acknowledgments

I would like to express my sincere gratitude to my thesis advisor, Professor Hong Qin

during my studies. I can not imagine myself completing this dissertation without his in-

spiration, encouragement and guidance. He showed such kindness and patience that no

graduate students expect more from their advisors. I am thankful to Professors Arie Kauf-

man, Michael Ashikhmin, Klaus Mueller, Dimitris Samaras and Manuel Oliveira for their

advice, as well as for serving on various committees. I also thank Doctor Ioana Boier-

Martin for taking the time to serve as the external member of my dissertation committee.

I wish to thank Kevin T. McDonnell for the contents of AppendixC. We spent numer-

ous hours together in discussing fascinating topics which ultimately led to this dissertation.

I am especially grateful for his friendship and integrity. It has also been a great pleasure

knowing many of the Visualization Lab members, especially Jing Hua, Chris Carner, Ying

He, Haixia Du, Ye Duan, Hui Xie, Rob Wlodarczyk, Xiaohu Guo, Kexiang Wang and

Sumantro Ray.

My research was supported in part by the following grants awarded to Professor Qin:

NSF CAREER award CCR-9896123, the NSF grants IIS-0082035, IIS-0097646, IIS-

0326388, and ACR-328930, and an Alfred P. Sloan Fellowship, and a Honda Initiation

Award.



Last, but certainly not least, I want to thank my parents, wife and daughter for their

endless love and support. Particularly, I do not know how to express my gratitude to my

wife, Hyunjoo, who have sacrificed so much for my sake.

This dissertation is dedicated to them.



Publications

Yu-Sung Chang, Kevin T. McDonnell, and Hong Qin. A new solid subdivision scheme

based on box splines. InProceedings of the Seventh ACM Symposium on Solid Mod-

eling and Applications, pages 226–233, June 2002.

Yu-Sung Chang, and Hong Qin, Spline-based Solid Subdivision Schemes over Arbitrary

Tetrahedral Meshes, Submitted for journal review, 2005.

Yu-Sung Chang, Kevin T. McDonnell, and Hong Qin. An interpolatory subdivision for

volumetric models over simplicial complexes. InProceedings of Shape Modeling

International 2003, pages 143–152, May 2003.

Yu-Sung Chang and Hong Qin, Multi-dimensional Non-manifold Subdivision over Sim-

plicial Complexes, Submitted for journal review, 2005.

Yu-Sung Chang and Hong Qin, A framework for multi-dimensional adaptive subdivision

objects. InProceedings of Solid Modeling 2004, pages 123–134, 2004.

Kevin T. McDonnell, Yu-Sung Chang, and Hong Qin, Interpolatory, Solid Subdivision

of Unstructured Hexahedral Meshes,The Visual Computer, 20(6):418–436, August

2004.

xxi



Kevin T. McDonnell, Yu-Sung Chang, and Hong Qin. DigitalSculpture: A subdivision-

based approach to interactive implicit surface modeling.Graphical Models,

67(4):347–369, July 2005.

Yu-Sung Chang and Hong Qin. High Quality Surface Partitioning and Fitting for Subdi-

vision, Submitted for journal review, 2005.

Yu-Sung Chang and Hong Qin. Multiresolution Volumetric Filtering based on Box

Splines, In preparation, 2005.

xxii



1

Notation

Through out this proposal, we use multi-index notation which is common in multivari-

ate analysis. We use a bold lowercase letter to indicate ann-tuple of variables, or vectors:

z = (z1, z2, ..., zn) ∈ Rn.

Likewise, boldi, j, k, andl are used in place for integern-tuple indexes:

i = (i1, i2, ..., in) ∈ Zn.

A bold uppercase bold letter represents a matrix. Possible exceptions are the directional

matrices for box splines, which are written in capital Greek letters, such asΞ.

A powerzi is defined as

zi = z1
i1z2

i2 · · · zn
in ,

and a summation is also defined as

∑
i

=
∑
i1

∑
i2

· · ·
∑
in

,



NOTATION 2

through out the proposal. By the norm|i| of an indexi, we mean,

|i| =
n∑

k=1

ik.

Unlike the index norm, the norm of arbitraryn-tuplez is defined when it is in need. A

modulus operation is also defined in multi-index manner. For instance,

i = (i1(mod p), i2(mod p), ..., in(mod p)).

All other binary operators follow the conventional multi-index notation. We show some

of common examples.

y = (y1, y2, ..., yn) ∈ Rn

z = (z1, z2, ..., zn) ∈ Rn

z + y = (z1 + y1, z2 + y2, ..., zn + yn)

cz = (cz1, cz2, ..., czn)

For simplicity, we use a bracket notation to indicate openness of an interval. For in-

stance, the expression,

x ∈ [a, b), y ∈ (c, d]

meansa ≤ x < b, c < y ≤ d, respectively. A special symboldenotes a half-open unit

n-cube,[0, 1)n.
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Chapter 1

Introduction

Solid modeling in computer graphics involves the techniques regarding the computer

representation, design, and manipulation of 3D objects or volume data. In the beginning

of the geometric modeling, the representation of 3D objects are limited to their surfaces,

or boundary representations. During the period, it was considered adequate to represent

3D objects with planes, simple primitives such as cubes, spheres, and cylinders, parametric

surfaces, or patches of these 2D objects. This trend still plays a major role in the geometric

modeling even today. For example, Boeing’s design of the commercial 777 aircraft, which

is considered to be the most advanced computer-aided design up to date, had been done

by CATIA [26], a commercial system which is developed by Dassualt in France, and is

marketed by IBM in the US. In reality, the most parts of CATIA program is based on

aged technologies, such as surface representations for modeling and some early stage solid

modeling techniques for engineering analysis.

Currently, the volume representations in solid modeling can be categorized as follow-

ings: Implicit function representations such as Constructive Solid Geometry (CSG), bound-

ary representations (B-reps), parametric representations, polyhedral mesh representations

and cell decomposition (voxels). Each representation has its own benefits and limitations.
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For instance, CSG is well suitable for representing mechanical objects which usually con-

sist of simple primitives such as spheres and cylinders, and their set operations. However,

it does not represent the boundaries of the objects explicitly, and it should be extracted us-

ing other methods. Boundary representations are vastly used in manufacturing industries,

based on standardized surfaces such as NURBS (non-uniform rational B-splines), yet they

do not represent the inside of 3D objects in reality and as such any complex set operations

are limited and are prone to approximate errors. Parametric representations of volume ob-

jects have an ability to represent continuous 3D fields, but they are limited by the topology

of the parametric space. Polyhedral meshes and cell decomposition are discrete represen-

tations of solid objects. As a result, analytic information such as derivatives and gradients

can be only acquired by approximation. In spite of the disadvantages, these representations

have been served as underlying solid modeling techniques for the past decades.

However, the recent advances in technologies makes it necessary to develop new class

of solid representation. One pivotal example is stereolithography, or 3D laying technology

used in rapid prototyping process (Figure1.2). This technology involves the thin-layering

of 3D models, the injection process of special liquid photopolymer, the hardening process

using the stereolithograph apparatus (SLA). The technology can produce a real object of

an arbitrary solid models using the liquid plastic. Since the process requires the continuous

layering of the inside of 3D models, the ideal computer models for this process should be

able to represent continuous varying material properties inside of the models. Functionally

graded materials (FGM) [43, 65] are another examples of the materials with continuously

varying properties (Figure1.3). These type of materials, often referred as heterogeneous,

or anisotropic materials are emerging rapidly in many practical fields. On the contrary, the

underlying assumption of the current solid representations, especially CSG and B-reps, is

that the material is homogeneous. This fact makes most of the current solid representations

very inadequate for representing the new materials. Another challenge associated with new
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technologies are the growing size of the volumetric data. When the first magnetic resonance

imaging (MRI) system was introduced, the resolutions were very limited. However, the

cutting edge 3 Tesla MRI machines [42] can achieve the resolution as high as1 mm3 per

voxel. As a consequence, they can generate very large volumetric data in short period

of time. In addition, the data from the other sources, such as the seismic data from geo-

scientific survey, various medical images, and the point clouds from 3D scanning machines

increase the amounts and the complexity of the volume data that should be dealt by the

solid modeling techniques. Moreover, new paradigms in shape design, such as the free-

form design [62], the interactive design, the physics-based modeling, and the integration

of shape modeling and engineering analysis [103] introduce new challenges to the existing

solid representations.

To resolve the current challenges in solid modeling, we propose Multiresolution Solid

Objects, or MSO, a new solid representation framework based on the subdivision method.

We base our representation upon simplicial complex meshes in 3D, which are numerically

stable and robust. We continue our dissertation by deriving a series of novel subdivision

schemes over the simplicial complex and other arbitrary meshes. The new schemes are

based on sound mathematical theories, such as trivariate spline solids and the generating

function method. We employ existing analysis techniques to examine and prove the conver-

gence of the schemes and the smoothness of the subdivision solid objects in the limit. We

extend our schemes to represent a variety of objects, such as objects with arbitrary topology,

multi-dimensional objects, non-manifold objects, and objects with sharp features. Finally,

we exploit the advantage of our approach by applying the schemes to practical applications,

such as heterogeneous material modeling and non-manifold object modeling.
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Structured meshes
based on

simplicial complexes

Multiresolution Solid Objects

Box-spline based approximate
solid subdivision scheme

Interpolatory solid
subdivision schemes

Multi-dimensional non-manifold
subdivision framework

Mathematical
analysis of

subdivision schemes

Applications

Direct Shape Modeling Heterogeneous Material Modeling Implicit Solid Modeling

Free-form Deformation Data Fitting / Compression Volume Filtering

New analysis tools
for high dim.

schemes

Figure 1.1:Conceptual hierarchy of the dissertation research.

1.1 Problem Statement

The recent emergence of new technologies poses new challenges to the current solid

modeling techniques, especially the volume representations. The challenges such as new

heterogeneous materials, the increasing complexity of volume data and solid models, the

demand of interactive design, and the integration of designing and analysis processes have

not been fully resolved by the state-of-the-art solid modeling techniques. We content that

Multiresolution Solid Objects, or MSO, is a possible answer to the new problems. Based

on the subdivision method, the MSO shares the advantages of subdivision surfaces in 2D

modeling, yet it has the benefits unique to solid modeling. The first step to the approach is

the realization of the following advantages and potentials of the MSO framework:

• It can take advantage of the benefits of other solid representations. It can be consid-

ered as parametric representations, yet its behavior resembles those of cell decompo-

sition or polyhedral mesh representations.

• Its base meshes comprise simplices, which are proven to be the most simple and sta-

ble structures and are favored in many numerical simulations, such as finite element
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methods (FEM).

• It provides hierarchical structures inherently. Moreover, it can provide level-of-detail

control through local subdivision.

• It can represent arbitrary 3D geometry, heterogeneous material properties and bound-

ary surfaces in a single framework.

• It can be generalized to represent multidimensional objects. Non-manifold objects

can be represented as a result of the generalization.

• It can be easily extended to provide the sharp feature representation within objects.

• It employs linear stationary procedures during the computation. It only involves

simple linear combinations in each step. It leads to straightforward implementation,

numerical stability and easy prediction of computational costs.

• It can utilize many existing mathematical tools to analyze subdivision surfaces.

In spite of the advantages, the MSO is not a trivial extension of current subdivision

surface schemes. Much work has to be done before real-world applications are able to

take advantage of the full potential of the MSO. Most of the problems are related to the

complexity of 3D space, and it is unique to the subdivision solid schemes. We address the

following problems in this dissertation:

• The choice of simplicial complex meshes is proven to be both beneficial and detri-

mental. It has the advantages of simplicity and stability, yet it lacks the properties

that are desired for the stationary subdivision schemes.

• Unlike the tensor-product approaches, we cannot deduce our subdivision rules from

curve or surface subdivision schemes. Instead, we have to rely on naive trivariate
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splines and their properties to derive subdivision rules. The subdivision masks and

rules are far more complex than those of the subdivision surfaces as a result.

• The generalization of the schemes to arbitrary 3D meshes introduces very complex

situations. Some extraordinary cases that never occur in 2D meshes are introduced.

• The mathematical analysis tools that are used for the analysis of surface subdivi-

sion schemes cannot be directly applied. Especially, lack of symmetry in 3D meshes

makes the symbolic matrix computations and the derivation of general solutions im-

possible.

• Non-manifold representations cover a wider range of cases than the cases that are

only involving surfaces. The same argument goes to feature representations. Most of

cases cannot be solved by any subdivision scheme of lower dimension.

1.2 Contributions

In this dissertation, we propose the MSO framework as a solution of the challenges to

current solid representations. Specifically, we have proposed several subdivision schemes

and their applications to demonstrate the potential of the MSO framework. The details of

the contributions of this dissertation are as follows:

• A new structured mesh based on simplicial complexes for solid subdivision schemes

is proposed. We prove that the proposed mesh, called octet-truss, satisfies the prop-

erties that are desired for the subdivision method. This provides the foundation of

the derivation of subdivision solid schemes over simplicial complexes.

• We propose a new approximate solid subdivision scheme based on box splines.

Based on a particular class of trivariate box splines, it achieves high smoothness
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with lower degree polynomials than those of tensor-product subdivision schemes.

Underlying octet-truss structure is generalized into arbitrary tetrahedral meshes in

3D. It offers shape modeling of arbitrary topology as well as heterogeneous material

objects.

• We develop a new interpolatory solid subdivision scheme over simplicial complexes.

The derivation of the rules are based on a weighted perturbation of linear interpola-

tion. The scheme provides powerful interpolatory modeling tool and non-manifold

representation without much modification. The smoothness of the regular cases is

proven by the generating function method.

• We propose a new interpolatory solid subdivisions scheme over unstructured hexa-

hedral meshes. The scheme is founded upon tri-cubic Lagrange interpolating poly-

nomials. We also illustrate the proof of the smoothness in the regular cases.

• We unify the existing subdivision schemes for curves and surfaces based on the

same class of box-splines with the developed approximate solid subdivision scheme

and present new framework for representation of multi-dimensional objects. Non-

manifold cases are categorized and several solutions are suggested. The scheme is

extended to incorporate with boundary and sharp feature representations.

• We present the current mathematical tools for the convergence and smoothness anal-

ysis of subdivision schemes and their application to the solid subdivision schemes.

We discuss the new challenges associated with the solid schemes and apply the anal-

ysis techniques to certain extend. We present the empirical data from the analysis

which highly suggest the desirable properties of our schemes.

• We utilize the proposed schemes to demonstrate the potential of the MSO framework.

We implement a wide range of applications using the schemes, including arbitrary



1. INTRODUCTION 10

shape design, heterogeneous material modeling, free-form design, non-manifold,

boundary and feature representations, implicit solid modeling, and free-form defor-

mation. In addition, we implement high quality surface partitioning and fitting for

subdivision employing our MSO framework and a volume filtering algorithm based

on anisotropic trivariate box splines.

1.3 Dissertation Organization

This dissertation is organized in the following fashion. In Chapter2, we shall begin

with a brief review on contemporary solid modeling techniques. It is followed by the de-

tailed review on parametric representations and the subdivision method. In Chapter3, we

discuss the meshes for the subdivision method in detail. We first present the 2D regular

meshes employed in various subdivision surface schemes. We extend the idea to the 3D

structured meshes, discuss the desired properties, and suggest a new structured mesh based

on simplicial complexes. In Chapter4, we derive, generalize and analyze a novel solid

subdivision scheme based on box splines. We present the complete derivation of the rules

and the detailed analysis. In Chapter5, we propose a new interpolatory solid subdivision

scheme over simplicial complexes. We derive the rules using the generating functions and

provide the proof of its smoothness in brief. In Chapter6, we extend our the box-spline

based scheme to handle special cases, and unify it with the lower dimensional box-spline

based subdivision schemes. In Chapter7, our schemes are implemented in various appli-

cations to demonstrate the potential of the MSO representation. Finally, the dissertation is

concluded in Chapter8 with the summary and the discussion on future research directions.

A collaborative research result with Kevin T. McDonnell is presented as an appendix in

AppendixC.
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Figure 1.2:3D Systems stereolithography machine (left), its photopolymer platform (right
top), and the end of a print run process (right bottom). (Images courtesy of PT CAM, Inc.)

Figure 1.3:Functionally graded microstructures (left), a fabricated FGM object (right top),
and a FGM fabrication machine (right bottom). (Images courtesy of NASA and FGM
Development Lab. at University of Maryland.)
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Chapter 2

Background Review

The most relevant topic in computer graphics to our Multiresolution Solid Objects ap-

proach is the subdivision method. In this chapter, we start with a brief overview of the

current solid representation techniques and their history. It is followed by the detailed sur-

vey on the subdivision method. Finally, analysis techniques for subdivision schemes are

also reviewed.

2.1 Volume Representations in Solid Modeling

Since Requicha and Voelcker [85]’s the famous survey paper in 1982, the past two

decades have witnessed significant growth in solid modeling, especially in the development

of volume representations. The volume representations in solid modeling can be catego-

rized as followings: Implicit function representations such as Constructive Solid Geometry

(CSG), boundary representations (B-reps), parametric representations, and cell decompo-

sition (voxels). B-reps are not volume representations of true sense, therefore it is omitted

in the review.
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2.1.1 Implicit Function Representations

Constructive Solid Geometry (CSG) [2, 71] and blobby models [9, 101] are two most

important examples of implicit function representations. They represent a solid as the

solution set of an implicit function,

w = f(x, y, z).

In general, a level set

w = f(x, y, z), w = w0

represents the boundary of the solid, and portions wherew < w0 comprise the interior.

In implicit function representations, it is easy to differentiate the interior from the exterior

and the boundary. Hence, they are well incorporated with algebraic operations on models

[70]. Also, it is free from the complex topology, since there is no explicit form of the

boundary. However, there are few disadvantages. For instance, there is no simple way to

evaluate them in general case [2] for rendering purpose. In addition, directly manipulating

the level-set geometry is very challenging because the solid boundary is implicitly defined.

2.1.2 Parametric Representations

In the beginning of the computer graphics, parametric representations have been one

of the most important techniques to represent geometric objects. In 1984, Boehmet

al.[12] surveyed parametric curves and surfaces which had been widely used especially

in computer-aided design and manufacturing. Basically, we express an object as a mapping

from a domain to three-dimensional Euclidean space.

y = f(x), y ∈ R3 (2.1)
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wherex ∈ D ⊆ Rk, for some domainD. Obviously,k depends on the Euclidean dimension

of the object that we want to represent. For instance,k = 1 for a curve,k = 2 for a surface,

andk = 3 for a solid object. Bernstein-B́ezier solids [54], B-spline solids, and other tensor

product based [44] approaches are examples of parametric solids.

If f is a function thatglobally satisfies the required properties,i.e.certain continuity,

it becomes hard for a user to control an object. In other word, iff is a cubic polynomial

curve that is written as

f(t) = c3t
3 + c2t

2 + c1t + c0, (2.2)

It would be impossible to modify the curve intuitively, by controlling the coefficients

ci’s. Therefore, we consider a parametric objectf that is an affine combination of piecewise

polynomials with local support:

f(x) =
∑

i

pi Ni(x), x ∈ D ⊆ Rk, (2.3)

where theNi’s are calledbasis functions. Ni’s satisfy the following properties: (1) piece-

wise polynomial; (2) local support; (3) non-negative definite; (4) partition of unity. Tensor

product based solids in particular have basis functions of the form

NI(t, s, r) = Ni0(t)⊗Ni1(s)⊗Ni2(r),

whereI = (i0, i1, i2). Since eachNi is defined only on finite support, the modification ofpi

only effects the local region of the object. In general, the basis functions can be evaluated

efficiently and robustly.
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2.1.3 Cell Decomposition

To date, cell decomposition techniques [41, 93] have been widely used in the volume

visualization field. These techniques discretize the entire three-dimensional space into a

rectangular grid. An object is represented as a collection of the volumetric elements, or

voxels. Not only the spatial occupation, voxels can contain other material properties, such

as density, temperature, color, etc. It could be understood an analogue to pixel-based im-

ages in two-dimensional space. Oftentimes, volume visualization techniques are used to

render voxelized objects. One of the disadvantages of cell decomposition methods is the

lack of high-level geometric interpretation. However, many researchers have presented

techniques that address this issue by incorporating voxel spaces with implicit functions for

practical applications [39].

2.2 Subdivision Method

Since the beginning of ancient Greek geometry,recursionprocess has been an essential

tool to design complex geometric objects. For instance, Euclid described the recursive con-

struction of alogarithmic spiralby using the Golden Rectangle and successively dividing

it (See Figure2.1). Nonetheless, the process is simple, yet it results in the elegant curve

that has captured many artistic minds during the centuries.

Subdivision modeling is a modern analogue to the recursive construction in computer

era. It is tightly related to the choice of a domain mesh and the evaluation of parametric

representations. The subdivision method can be understood as the procedural and recursive

process to evaluate geometric objects in parametric representations, especially in the form

of Equation2.3. In the next few sections, we shall review the current subdivision modeling

techniques and discuss their properties.
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Figure 2.1:A logarithmic curve from the Golden Rectangle.

2.2.1 Stationary Subdivision Curves

(a) (b) (c)

Figure 2.2:An example of a curve generated by the Chaikin’s algorithm. (a) The initial
control points. (b) The first level of the subdivision. (c) In the limit.

It is considered that “Chaikin’s algorithm” [15] to generate a spline curve is the first

case of subdivision schemes in computer graphics. In its simplest form, the subdivision

process can be expressed as


p`+1

2i = 3
4
p`

i + 1
4
p`

i+1

p`+1
2i+1 = 1

4
p`

i + 3
4
p`

i+1,

where` is subdivision level andi is an index for control points. Since we cut the corners
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of each line segments to acquire the finer approximation, it is often referred as “Chopping

corner” method. A curve generated by this formula forms aC1 spline curve in the limit.

Note that the curve does not interpolate the original control points, which makes it an

approximatingscheme.

Another example of an approximating subdivision curve is “Cubic spline” scheme. The

process can be formulated as


p`+1

2i = 1
2
p`

i + 1
2
p`

i+1

p`+1
2i+1 = 1

8
p`

i + 3
4
p`

i+1 + 1
8
p`

i+2.

The limit curve of the scheme results inC2, which is higher continuity than Chaikin’s.

However, it requires slightly larger neighbors to calculate new points. Nonetheless, these

two schemes share similarity in derivation since they are both originated from spline curves.

In the limit, the both schemes converge to curves of the form:

f(t) =
∑

i

piBi(t), (2.4)

whereBi’s are basis functions for splines andpi’s are initial control points.

Unique examples of subdivision curves are “4-point subdivision curve” scheme by Dyn

et al.and its variations [35, 38, 32, 37, 53, 34]. Their uniqueness is due to the interpolating

aspect,i.e.the limit curves interpolate original control points. Those schemes are called

interpolatoryschemes. The simplest form of the algorithms can be written as


p`+1

2i = p`
i

p`+1
2i+1 = (1

2
+ w)(p`

i + p`
i+1)− w(p`

i−1 + p`
i+2),
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wherew ∈ R controls a tension of the curve which is generated by the scheme. In fact,

the choice ofw determines the convergence of the process. Ifw = 0, it is clear that the

process is simply linear interpolation. In the range ofw ∈ (0, 1
8
), the limit curve which

is produced by the scheme belongs toC1 class. Otherwise, the whole process diverges.

Moreover, the higher continuity and convexity preserving can be achieved if we choosew

more restrictively [53, 34]. Because they are interpolatory, control points are geometrically

invariant, which makes them useful in data fitting and constraint enforcement.

Since a curve is an image of one-dimensional Euclidean space, its domain has limited

variety of topology [66, 98]. We say two spacesA andB are topologically equivalent if

there exists an injective, subjective and continuous mappingf from A to B.

(a) (b) (c)

Figure 2.3:An example of the different topologies in 1-D. The curves are the Chaikin’s.
(a) An open interval (b) TheS1. (c) The modification to theS1.

The trivial case is that the domain is topologically equivalent to closed unit interval

[0, 1]. Another case is when the domain is equivalent toS1, the fundamental group of the

circle in R2, i.e.S1 = {e2πiθ | θ ∈ [0, 1)}. The first case requires special rules for both

ends of the interval, which could be chosen to be interpolate the end points or to be open.

The aforementioned algorithms have no problem with the latter case. Other topology cases

can be covered by the two cases. However, in the case of Figure2.3(c), we cannot find the

tangent at the intersecting point.
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2.2.2 Stationary Subdivision Surfaces

Subdivision surfaces have been well researched in the past two decades. It is because

unlike subdivision curves that show little advantages over parametric curves, subdivision

surfaces can actually handle topologically challenging cases in which parametric represen-

tation fails or becomes unpractically complex.

A trivial way to extend subdivision curves into surfaces is using the tensor product. In

particular, ifBi’s are basis functions for spline curves, we can define spline surfaces as

f(t, s) =
∑

i

∑
j

pi,jBi(t)Bj(s), (2.5)

wherepi,j ’s are initial control points. Since the tensor product of intervals inR1 is topo-

logically equivalent to rectangular region inR2, the domain mesh for the subdivision sur-

face based on the tensor product shall be quadrilateral. Another way to derive subdivision

surfaces is using multivariate spines. In this case, the mesh could be different than quadri-

lateral. In many cases, a triangular mesh is chosen.

2.2.2.1 Approximating Surface Schemes

Catmull-Clark Scheme

(a) (b) (c)

Figure 2.4: An example of the Catmull-Clark subdivision surface. (Image courtesy of
Kenneth Joy.)
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In the late 70’s, Catmull and Clark [14] published an approximating subdivision sur-

face based on quadrilateral meshes. The scheme introduces new vertices recursively in

each level from affine combinations of existing vertices. Using new vertices, we split each

quadrilateral face into 4 sub-faces. This process is sometimes called asface-splitor primal.

In the limit, the scheme produces bi-cubic B-spline surfaces, which are the tensor product

version of cubic B-spline curves. In addition to regular vertices of which valences are al-

ways 4, the scheme employs rules forextraordinaryvertices. Because an initial mesh is

finite quadrilateral lattice, we can assume that extraordinary vertices are finite. During the

process, the number of extraordinary vertices never changes. Therefore, the limit surfaces

belong toC2 class except near extraordinary vertices, where they achieveC1 continuity.

The tangent-plane continuity of the scheme was proved by Ball and Storry [5]. The C1

continuity at extraordinary vertices are analyzed by Peters and Reif [73]. The scheme can

be summarized as the following rules:

• Face point: For each quadrilateral face�p0p1p2p3, we introduce new pointf which

is its centroid,i.e.f = 1
4
(p0 + p1 + p2 + p3).

• Edge point: For each edgeq0q1 , we introduce new edge pointe which is a weighted

average of its end points and 4 other vertices from two faces that share the edge. The

formula can be written ase = 3
8
(q0 + q1) + 1

16
(q′0 + q′1 + q′2 + q′3) whereq′i’s are

remaining vertices from two faces that share the edge.

• Vertex point: For each vertexp with the valencen, we calculate new vertex point

v by the following formula:v = 1
n

(
favg + mavg + (n − 3)p

)
, wherefavg is the

average of the centroids of the faces that share the vertex,mavg is the average of the

mid-points of the edges that contains the vertex.

Many other researchers have intensively studied the Catmull-Clark scheme and its vari-

ations due to its low degree and high continuity. Especially, DeRoeset al.[30] discussed
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further extension of the scheme to handle special situations, like creases, sharp features and

boundaries. The motivation was to extend the scheme to be used in commercial modeling,

especially studio Pixar’s animated films. Recently, Biermannet al.[6, 7] also suggested the

modification of the scheme to introduce sharp features. Stam [91] proposed an exact evalu-

ation of the scheme without explicit subdivision process by utilizing eigenvector spaces of

subdivision matrices.

Doo-Sabin Scheme

(a) (b) (c)

Figure 2.5: An example of the Doo-Sabin subdivision surface. (Image courtesy of Ha
Quang Le.)

In the same year, Doo and Sabin [31] also proposed new approximating subdivision

surfaces on quadrilateral meshes. The limit of this process results in a bi-quadratic B-

splines. Unlike the Catmull-Clark scheme, they use thevertex-splitmethod to generate

sub-faces. Instead of introducing 4 sub-faces for each quadrilateral, each vertex is replaced

by n vertices wheren is the number of faces that share the vertex. For regular topology, it

only requires the following rule:

vnew =
9

16
p0 +

3

16
(p1 + p2) +

1

16
p3, (2.6)

wherepi’s are the vertices of a quadrilateral that contains the new vertex.p0 is the closest
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to the vertex andp3 is the farthest. Exceptional rules are introduced for extraordinary ver-

tices and boundaries. Overall, the process achieveC1 continuity [73]. Narsi [67] suggested

different rules for boundaries. Later, Habib and Warren [45] and Peters and Reif [74] pro-

posed even simpler version of the Doo-Sabin scheme, that is called “Midedge” subdivision

which only uses 3 out of 4 vertices that described above. The regular rule can be reduced

to

vnew =
1

2
p0 +

1

4
(p1 + p2). (2.7)

In addition to the scheme, Doo and Sabin [31]’s work also has an important role in the

subdivision analysis. They introduced the usage of subdivision matrix and Discrete Fourier

Transform (DFT) as a main tool to analyze subdivision scheme at extraordinary vertices.

Loop Scheme

(a) (b) (c)

Figure 2.6:An example of the Loop subdivision surface. (Image courtesy of Ha Quang
Le.)

Charles Loop [58] proposed an approximating subdivision surfaces based on triangu-

lar meshes in his master thesis. The scheme is different from others in many ways. First,

the underlying domain is triangular. Each triangle is split into 4 sub-faces by introducing

new vertex and edge points. Triangular meshes are often more flexible than quadrilateral

meshes, which makes it ideal for complex models. Also, any polyhedral meshes can be
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easily converted into triangular meshes by any triangulation. Even Many popular algo-

rithms exist to generate triangular meshes from unorganized point sets, such as Delaunay

triangulation [27] and Voronoi diagrams [1] . Moreover, the scheme is based on the double

3-directional box spline [29], which attainsC2 continuity without requiring high degree

of polynomial. In fact, the evaluation of the box splines through subdivision had been re-

searched before [28, 10, 11, 25, 22], but Loop’s work includes the extraordinary vertex rule

and its analysis, which guaranteesC1 continuity over the mesh. The rule can be specified

into two cases.

• Edge point: For each edgep0p1, we introduce new edge pointe = 3
8
(p0 + p1) +

1
8
(q0 + q1), where4p0p1q0 and4p0p1q1 are the neighboring triangles.

• Vertex point: For each vertexp with the valencen, we introduce new vertex pointv

by averaging adjacent vertices with weight. The rule is:v = (1− nβ)p + β(q0 +

· · ·+ qn−1) whereβ = 1
n

(
5
8
− (3

8
+ 1

4
cos 2π

n
)2

)
.

TheC1 continuity of the Loop scheme up ton < 100 was proven by Schweitzer [88].

Later, Zorin proved the continuity for all valence in his work [104]. The choice ofβ is

appeared in Loop’s paper along with the analysis of extraordinary vertices. Later Warren

[94] proposed simpler rule by choosingβ = 3
8n

for n > 3 andβ = 3
16

for n = 3. Hoppeet

al.[46] and Biermannet al.[8] suggested extensions of the Loop scheme with many special

rules, including edges, corners,etc. Many geometric properties of the scheme has been

proven by researchers, including Zorinet al.’s [106] explicit evaluation of the scheme.

Ying et al.[102] proposed new extension of the Loop scheme that can handle non-manifold

objects.
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(a)

(b)

Figure 2.7: (a) The subdivision rules for the 4-8 subdivision. (Image courtesy of Luiz
Velho.) (b) The face split in the

√
3-subdivision. (Image curtesy of Leif Kobbelt)

Other Approximating Surface Schemes

Recently, Velho [92] proposed “4-8 subdivision”. The scheme is based on the four-

directional box spline, but uses a different split, called the[4.82] Laves tiling. Unlike the

face-split, which quadruples the number of faces in each subdivision, it only doubles the

number of faces. Also, it has higherC4 continuity almost everywhere, except extraordinary

vertices where it isC1.

Kobbelt [51] suggested new subdivision scheme, which is called “
√

3-subdivision”.

It only introduces one new point for each face. However, in each step, the subdivision

process is applied twice, which causes tri-section of each edge, unlike the common face-

split, which causes quad-section. Therefore, it is called the
√

3-subdivision. This results in

a slower increase of the number of faces. Its masks (or stencils) for the subdivision rules

have minimum size and maximum symmetry. It hasC2 continuity withC1 at extraordinary

vertices. Because of new splitting strategy, it also enables possible adaptive refinement

under preservation of the mesh consistency.
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2.2.2.2 Interpolatory Surface Schemes

Interpolatoryschemes are subdivision schemes that interpolate initial control points in

the limit. During the subdivision process, the control points are geometrically invariant

once they are introduced. Interpolatory schemes have the following merits over approxi-

mating schemes:

• it is straightforward to enforce constraints during physics-based simulation, it sup-

ports intuitive, direct manipulation of control points,

• there is no need for an auxiliary subdivision matrix for vertex points, and

• it is not necessary for subdivision matrix inversion during data fitting applications.

Butterfly Scheme

(a) (b)

Figure 2.8:The subdivision masks for the Butterfly scheme. (a) The regular mask. (b) The
boundary mask (the 4-point scheme).

Dyn et al.[35, 38, 32, 37, 34] developed interpolatory subdivision curves and extended

them to surface cases. They introduced an interpolatory subdivision scheme [36, 38] based

on their interpolatory curves. The scheme is oftentimes called “Butterfly scheme” because

of the shape of its neighbor mask. It is a face-split and triangular-based scheme. At level`,
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we introduce new edge pointe`+1 by the following rule:

e`+1 =
1

2
(p`

0 + p`
1) + 2w(p`

2 + p`
3)− w(p`

4 + p`
5 + p`

6 + p`
7). (2.8)

Like the 4-point scheme, the choice ofw determines the convergence and the continuity

of the scheme. They proved [38] the range where the scheme is convergent and therefore

guaranteesC1 continuity. Typically,w = 1
16

is chosen. It is proven that the scheme is con-

vergent whenw ∈ (0, 0.096). Dyn et al.[33] also suggested the variations of the scheme,

including “The Averaged-Butterfly scheme” and “A truncated tensor product scheme”. For

the extraordinary cases, Zorin [104] proved it isC1 for k ≤ 7 andk 6= 3. Zorin et al.[108]

proposed a modified version of the Butterfly scheme, which guaranteesC1 everywhere. A

detailed extension of the Butterfly scheme is well documented in the course note of SIG-

GRAPH 2000 [107].

Kobbelt Scheme

Kobbelt [49] presented an interpolatory subdivision surface defined on arbitrary quadri-

lateral meshes. It is the tensor product of the 4-point scheme. For extraordinary vertices, it

achieveC1 continuity for any valence. One shortfall of the scheme is that it is impossible to

compute eigenvectors of the subdivision matrix explicitly. Therefore, there are no precise

expression for tangents.

2.2.3 Variational Subdivision Schemes

Although stationary schemes are desirable in many cases because of their simplicity,

most of the stationary subdivision schemes haveC1 continuity at extraordinary vertices.

It is possible to acquire a subdivision rule which isC2 continuous everywhere [80, 81],

but it requires very large masks or has zero curvature at extraordinary vertices. Prautzsch
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and Umlauf [82] suggested a solution to this situation by introducingG2 surfaces near

extraordinary vertices. However, the problem of degeneracy is still visible for most of

the stationary subdivision schemes. Also, for the interpolatory schemes, the irregularities

become more noticeable at extraordinary vertices.

Variationalmethods for subdivision modeling are related to themultigrid method in the

numerical analysis [52, 96, 13]. The methods consist of two factors.

• E : the energy or fairness functional.

• M: the discretized domain grid.

Basically, a variational approach try to solve the minimization problem for a given

continuous functional over a domain. We discretize the domain into a gridM, and the

variational solution can be approximated by a discrete coefficient vectorp with one value

per grid point inM. The problem can be expressed as

min
M

(pTEp), (2.9)

whereE is a symmetric, positive definite matrix that depends on the functionalE . The

trivial solution for the minimization isp = 0. To ensure non-trivial solution, we choose

extra conditions. For example, a simple linear system

Ep = b (2.10)

can be used as a constraint, whereb is associated boundary condition. The system can be

solved directly using numerical methods, such as the Gaussian elimination, or the Jacobi

or Gauss-Seidel iteration. However, the direct methods can be expensive in computation

time and memory requirement. The multigrid method try to solve the system hierarchically.
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Using a sequence of gridM` which becomes finer over the level`, and the corresponding

matrixE`, the solution can be computed in the following three steps [13].

(a) Prediction: Compute an initial guessp0
` at level`, by computingp0

` = S`−1p`. S`−1 is

a matrix that maps vectors fromM`−1 toM`. It is called a “prolongation operator”.

The simplest way is using piecewise linear interpolation.

(b) Smoothing: Improve the quality of the initial guessp0
` byk iteration of a direct method,

i.e.Jacobi or Gauss-Seidel iteration. We obtainpk
` and the residualrk

` .

(c) Coarse grid correction: Eliminate all entries inrk
` which do not correspond to a grid in

M`−1. Using this restricted residualr`−1, solveE`−1e`−1 = r`−1. Add the correction

terme` = S`−1e`−1 to the currentpk
` .

If we apply this in subdivision schemes,S` can be considered as a subdivision matrix. If

a variational rule always generates no residue, we can get curves or surfaces that minimizes

given energy functional.

Kobbelt [50, 52] summarized the approach to variational subdivision schemes, and dis-

played several examples of subdivision rules for curves and surfaces that minimize certain

fairness functionals,i.e.a subdivision rule for curvature minimizing curves. He proposed a

systematical way to acquire rules for variational subdivision schemes.

Weimer and Warren [99, 95, 100] published series of research related on variational

subdivision schemes that satisfy partial differential equations, for instance, fluid or thin

plate equations.

Since the variational schemes are less susceptible to the complex topology and connec-

tivity of meshes, and it is easy to satisfy desired conditions in the limit, this approach has

been acquiring popularity recently.
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Figure 2.9:An example of a variational subdivision scheme. This example simulates fluid
flow in the limit. (Image curtesy of Henrik Weimer)

2.2.4 High-Dimensional Subdivision Schemes

Despite the popularity of subdivision, there has been less research regarding high-

dimensional subdivision objects,i.e., subdivision solids or multi-dimensional objects. This

is due to the complexity of the domain topology and the lack of proper analysis tools for

high-dimensional schemes.

MacCracken and Joy [59] proposed a tensor product extension of the Catmull-Clark

scheme in the volumetric setting, mainly for the purpose of free-form deformation in three-

dimensional space. In the limit, the process generates tri-cubic B-spline solids, except at

extraordinary vertices. Obviously, it is a hexahedral-based, approximating scheme. The

rules can be summarized as the following:

• Cell point: For each cell, we introduce new cell pointc which is its centroid.

• Face point: For each face, we introduce new face pointf by computing the weighted

averagef = 1
4
(c0 + 2f + c1) wheref is the face’s centroid andc0 andc1 are the

centroids of the cells on either side of the face.

• Edge point: For each edge, we introduce new edge pointe by computing the

weighted averagee = 1
n

(
cavg + 2favg + (n − 3)m

)
, wherecavg and favg are the

averages of the centroids of the cells and the faces that contain the edge, respectively.
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m is the midpoint of the edge, andn is the number of faces that share the edge.

• Vertex point: For each vertexp, we introduce new vertex pointv by computing the

weighted averagev = 1
8
(cavg + 3favg + 3mavg + p), wherecavg andfavg are the av-

erages of the centroids of the cells and the faces that contain the vertex, respectively.

mavg is the average of midpoints of the edges that shares the vertex.

Since the scheme is based on the Catmull-Clark scheme, the rules are similar. Even

though the Catmull-Clark scheme has been intensively studied, the analysis, especially for

extraordinary cases, of the solid scheme has not been fully exploited. Joy and MacCracken

[48] proved the continuity on regular meshes. However, it appears that current techniques

to prove the continuity along extraordinary vertices on the subdivision surfaces cannot be

directly applied the solid case.

Figure 2.10:A simple example of the MacCracken and Joy’s scheme (Image curtesy of
Kevin T. McDonnell).

Later on, Bajajet al.[4] further extended the scheme with the analysis based on numer-

ical experiments. They approached the problem by separating the process into multi-linear

subdivision followed by a cell averaging operation. Therefore, they called it “MLCA” or

“Multi-linear Cell Averaging” scheme. Since the scheme makes no assumption on the lo-

cal topology of the hexahedral mesh, it can be directly applied to non-manifold situations.

They also devised special rules for creases and boundaries. The volumetric analysis for the
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continuity is based on numerical experiments. They calculated eigenvalues for extraordi-

nary cases and confirmed that the values are within the range of the convergence.

(a)

(b)

Figure 2.11:The MCLA scheme. (a) An simple solid example. (b) A model with non-
manifold topology. (Image curtesy of Chandrajit Bajaj)

Peterset al.[75, 76] used the 7-directional trivariate box spline to blend CSG primi-

tives. They used the tri-variate box spline as a filter of three-dimensional space to blend

CSG objects embedded in it. To evaluate the filter, well-known subdivision process for

computing the box splines [29] is employed. Since the filter is only applied to the reg-

ular hexahedral grid, or even the voxel space, it does not have to deal with the complex

problems, like the extraordinary topology or the connectivity. Linsenet al.[57] recently

proposed “4
√

2 subdivision” to represent time-varying volume data in hierarchical fashion.

This four-dimensional subdivision scheme provides both spatial and temporal scalability.

Also, they used quadri-linear B-spline wavelet lifting scheme based on the4
√

2 subdivi-

sion for high-quality data approximation. Pascucci [69]’s recent work on high dimensional

subdivision scheme suggested interesting cell-split of arbitrary polyhedra to slow the in-

crease of cells during the subdivision process. It introduces specialdiamondcells during

the process, which makes it hard to analysis.
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The variational scheme that was proposed by Weimer and Warren [100] could be con-

sidered as solid subdivision scheme, since the fluid flow equation which the scheme is

approximating in the limit is based on three-dimensional space. Basically, by choosing a

suitable partial differential equation and following the framework [52], it is almost sys-

tematic to acquire a variational scheme of which domain is high-dimensional. However,

it should be further investigated to fit the purpose of geometric modeling and interactive

design.

Finally, the recent subdivision scheme proposed by Schaeferet al.[87] is the most rele-

vant subdivision scheme to our own subdivision solids schemes [16, 17] up to date. Their

scheme is based on the structure that we have proposed in [16] and the paper contains anal-

ysis on special cases, especially, the face-to-face case, using the joint spectral analysis by

Levin et al.[55].

2.2.5 Analysis of Subdivision Schemes

Many researchers has been working on the subdivision analysis near extraordinary

topology, especially for the extraordinary connectivity. More recently, Micchelli [64],

Prautzsch [78, 82, 80, 79, 81], Reif [84, 83], and Zorin [108, 104, 105, 106] investigated the

sufficient and necessary conditions of the convergence and the continuity. In most cases,

they analyze eigenvalues and eigenvectors of subdivision matrices by using spectral anal-

ysis tools. Since their approaches to the problem share many similarities, we shall discuss

the analysis in unified way. Note that the above analysis is mostly for subdivision surfaces.

Subdivision Matrix

As we have seen in the previous sections, a subdivision rule can be written as linear

combinations of control points, thus it can be represented as a linear system using a matrix
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form. Since we are concerned in the continuity near extraordinary vertices, we denote an

extraordinary vertex at level` asp`
0. Letp`

1, · · · ,p`
m be the neighbors of the vertex defined

by the subdivision mask. Then the subdivision process can be written by the linear system

p`+1 = Sp`, (2.11)

wherep` consists ofv`
i as its row vectors. We call the matrixS thesubdivision matrix.

Eigen Analysis by Discrete Fourier Transform

The subdivision matrix has particular properties. First, it forms a cyclic structure in-

side, because the same subdivision rules are applied around the neighbors and theplanar

symmetryof the mask. Also its eigenvalues and eigenvectors are directly related to the

convergence and continuity of the subdivision scheme.

Suppose we find eigenvaluesλi and corresponding eigenvectorsvi for the matrixS.

Let us assume thatλi is non-increasing order. Initial control point setsp0 can be expressed

in the eigenspace and eigenbasis explained by these eigenvectors:

p0 = a0v0 + a1v1 + · · ·+ anvn. (2.12)

Therefore, the control points at level` can be expressed as

p` = S`p0 = λ`
0a0v0 + λ`

1a1v1 + · · ·+ λ`
nanvn. (2.13)

Many researchers [78, 84, 80, 105] suggested that the condition

λ0 = 1 	 λ1 ≥ λ2 	 λ3, · · · , λn (2.14)
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is a necessary condition for the subdivision scheme to be convergent and tangent-plane

continuous at the extraordinary vertexp0
0. If we enforce the condition (Equation2.14), it is

clear to see the limit vertex of the vertexp0
0 is a0. Also, the tangent directions area1 and

a2 at the same point. The normal vector at the point can be calculated by,

nv = a1 × a2. (2.15)

To acquire the subdivision rules near the extraordinary vertex or to prove the continuity

in general, we need to compute eigenvalues and eigenvectors ofS, symbolically. There are

many mathematical processes to compute them, but Doo and Sabin [31] and Ball and Storry

[5] used Discrete Fourier Transform (or DFT). This was an excellent choice for subdivision

surfaces, since the masks for extraordinary vertices always have the planar symmetry. This

makes the matrixS forms a cyclic structure inside, and after applying DFT, it is easy

to calculate eigenvalues and eigenvectors symbolically. Almost all subdivision analysis

follow the same method afterward.

Figure 2.12:3-D Plotting of the functionf : (r, t) → (cos 3t, r sin 3t, r2 sin t), (r, t) ∈
[0, 1]× [0, 2π). It is tangent-plane continuous, but notC1 continuous near the origin.

Characteristic Maps

Note that the condition (Equation2.14) is only a necessary condition. Also, it is not

a C1 continuous condition. There is an example where a surface satisfy tangent-plane
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continuity but it fails to beC1 continuous (See Figure2.12). Reif [84] introduced the idea

of the characteristic mapnear extraordinary vertices. The map is defined on the patches

of the eigenvectors by usingS. It can be viewed as a two-dimensional spline function

with two-dimensional control points given by the eigenvectors ofS. He proved that the

subdivision scheme isC1 continuous if and only if the map is regular and injective. Zorin

[105] extended the method further especially for triangular meshes.
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Chapter 3

Subdivision Meshes

The key element of any subdivision scheme is its underlying domain mesh and how we

split it into finer mesh. It is increasingly important in high dimensional schemes, since the

mesh itself becomes non-trivial. In this chapter, we discuss the desired properties of subdi-

vision meshes for stationary schemes and present the regular structured meshes in various

dimensions. Later on, we address the definition of simplicial complexes, the motivation be-

hind the choice of simplicial complex meshes, the problems associated a subdivision mesh

based on simplicial complex, and a possible solution to the problems.

3.1 Introduction and Motivation

During any subdivision process, we introduce new vertices associated existing elements

– vertices, edges, faces, and cells for solid cases– using the information about their neigh-

bors and the derived weight values from the subdivision scheme. The information about

the neighbors is acquired from the connectivity among the vertices, which is given by the

form of subdivision meshes. In the most general case, subdivision meshes can be consid-

ered as undirected graphs inRm. The subdivision meshes are essential in any subdivision
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schemes. Not only they provide connectivity information during the process, but also they

are deeply connected with the derivation and the generalization of the scheme. In partic-

ular, it is desired for subdivision meshes of stationary subdivision schemes to satisfy the

following properties.

• Cell decomposition: A subdivision mesh consists of polygons or polyhedra of di-

mensionm in Rm. If the mesh admits proper polyhedral decomposition, we call each

decomposed element as acell.

• Self-congruency: Each cell, if divided by a proper split method, yields sub-cells

which are congruent to the original cell.

It is possible that the mesh does not yield a valid polyhedral decomposition inRm. How-

ever, it becomes complicated to generalize the subdivision rules in this case. In the ideal

case, the subdivision process will be infinitely repeated to acquire the limit object. Con-

sidering the infinite splits of each cell, it is obvious that any cells that satisfy the self-

congruency property can tile the entireRm space. Therefore, it is clear that any finite sub-

division meshes that satisfy the above two properties automatically satisfy the following

property:

• Regularity: Possible exception of very small number of cases, the number of vertices

with different valences are not increasing during the subdivision process. In other

words, the extraordinary valences are finite, given by the initial mesh.

It is trivial that a part of any regular structured mesh inRm satisfies the properties. Such

regular structured mesh is called atiling, or honeycomb. The understanding of the regular

structured meshes inRm is essential to understand the subdivision process.
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3.2 Tiling of The Spaces

A regular structured mesh inRm can be considered as a tiling ofRm. More precisely, a

tiling means a covering of a space or a domain with certain primitive(s) in structured man-

ner. Each primitive is called atile. Generally, it is an interval, a polygon or a polyhedron,

depending on the dimension of the domain. A tiling is notably depending on the dimension

of a domain [47]. If our domain is one-dimensional, there is only trivial tiling by intervals.

It could be uniform tiling or a tiling by intervals of various lengths. Nonetheless, the tiling

problem here is almost non-existing.

Figure 3.1:The 11 isohedral (Laves) tilings of 2-D space. (Image curtesy of Denis Zorin)

In two-dimensional space, the problem becomes slightly complex. If a tiling consists of

only one type of a polygon, it is called anisohedral, or aLavestiling. It is known [47, 107]

that there are eleven such tilings for the plane. Theirdual tilings, which can be obtained by
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connecting the centroid of each tile, are calledArchimedeantilings. In these cases, we only

consider the convex polytopes as tiles. Archimedean tilings consist of regular polygons, in

general. However, they are not isohedral tilings. We refer them asanisohedraltilings. For

instance, the Catmull-Clark scheme [14] is based on the[44] tiling and the Loop scheme

[58] and the Butterfly scheme [36] are based on the[63] tiling on regular meshes. Kobbelt’s
√

3-subdivision scheme [51] produce the[3.122] tiling when it is applied once, and then it

regenerate the finer[63] tiling at the second pass. Velho’s 4-8 subdivision [92] is based on

the regular[4.82] tiling. See Figure3.1and Figure3.2 for the complete listing of isohedral

tilings and their duals.

Figure 3.2:The Archimedean tilings, dual to Laves. (Image curtesy of Denis Zorin)
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3.3 Regular and Quasi-Regular Structured Meshes

To continue investigating the structured meshes in high dimensional spaces, we adopt

the Schl̈afli symbol to represent regular structures [24]. The Schl̈afli symbol is defined as

the following:

Definition 3.1. The Schl̈afli symbol{p} defines a regularp-gon. The Schläfli symbol{p, q}

represents a regular structured mesh inR2, such that each cell is a regularp-gon and

there areq of them at each vertex. The Schläfli symbol{p
q
} represents a dual quasi-regular

structured mesh of{p, q}. In 3D space , the Schläfli symbol{p, q, r} defines a regular

structured mesh inR3, such that each cell is{p, q}, i.e.it is a regular polytope with faces of

a regularp-gon and there areq of them at each vertex, and there arer of them surrounding

each edge. The same analogue holds for higher dimensional structures.

Trivially, the regular structure means each cell is a regular polygon or regular polyhedra,

and they are all equal. To understandquasi-regularstructure, we first understand thevertex

figure. The vertex figure of a vertex of a structured mesh is defined by a polyhedron whose

vertices are the mid-points of all the edges that emanate from the given vertex. A mesh is

called quasi-regular if its cells are regular while its vertex figures are quasi-regular. It is

clear to represent the isohedral tilings using the Schläfli symbol. For instance,[44], [36],

and[63] can be rewritten as{4, 4}, {6, 3} and{3, 6} in the Schl̈afli symbol, respectively.

By examining the properties of the Schläfli symbols, one can easily prove that for every

m ≥ 2, {4, 3m−2, 4} admits a regular structured mesh inRm. In fact, this is nothing more

than the simple lattice structureZm. Unfortunately, it is the only regular structure form = 3

andm ≥ 5. Form = 4, there exist two more regular structured meshes,{3, 3, 4, 3} and the

reciprocal of it,{3, 4, 3, 3}. Note that the only regular structure inR3 is {4, 3, 4}, the cubic

structured mesh.
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3.4 Simplicial Complex

A k-simplexS can be defined as a set inRn,

S = {x ∈ Rn|x =
k∑

i=1

ci(xi − x0)}, (3.1)

where

ci ≥ 1,
k∑

i=1

ci = 1, xi ∈ Rn. (3.2)

SinceS can be uniquely determined byk + 1 pointsx0, x1, ... ,xk, and is independent of

their ordering, we simply use a set notationS := {x0,x1, ...,xk}. In this paper, we limitk

to be less than or equal to three. Note that any subset ofS also forms a simplex. Geometri-

cally, each subset can be considered as a face, an edge, or a vertex. We callk thedimension

of the simplexS, or dim(S). A simplicial complex, or a complex,C is a collection of

simplices where: (1) the subsets of each simplex inC is in C; (2) the intersection of any

two simplices ofC is a subsimplex of both. The second property prevents the introduction

of T-junctions or the improper incursion among simplices.

During our Multiresolution Solid Object framework, we choose to use a simplicial com-

plex as our underlying mesh, except for the one occasion (ChapterC). The reasons behind

our choice are the followings:

• A simplex is the most simple polytope in any dimensional spaces.

• A simplex is numerically stable. For instance, if you choose the lengths of edges,

there exists a unique configuration of the simplex. It is not true for other polytopes

in general, for instance, a hexahedron.

• Other polyhedral meshes can be easily converted into simplicial complex meshes.

• Simplicial complex meshes can be effectively acquired from point clouds, volume
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data and other high dimensional data by employing robust algorithms, such as De-

launay tessellation algorithm.

• Often times, simplicial complex meshes are the choice of the underlying mesh struc-

ture for many numerical analysis and simulations, such as finite element analysis

(FEA).

• Since a projection of a simplex is always a simplex, any simplicial complex structure

can be displayed as triangular meshes on computer display. Therefore, we can easily

take advantage of current triangle-driven, accelerated graphics hardware.

To serve simplicial complex meshes as our subdivision meshes, we first investigate the

possibility of the regular structure based on simplicial complexes. In 2D and 3D spaces,

there exist regular simplices, a triangle ({3}) and a tetrahedron ({3, 3}), respectively. The

regular triangles facilitate the regular structured mesh in 2D,{3, 6}. In fact, by simple edge

bisection, we can easily acquire congruent sub-triangles (Figure3.3(a)). Therefore, the

triangular mesh is well suitable for the subdivision method. The subdivision surfaces, such

as the Loop scheme [58] and the Butterfly scheme [36], employ the{3, 6} meshes as their

underlying structure.

However, a simple cell-split by edge bisection of a tetrahedron does not yield congruent

sub-tetrahedra. Instead, it produces an octahedron surrounded by four tetrahedra (Figure

3.3(b)). This result makes tetrahedral cells inadequate for the subdivision process. Other

splits of a tetrahedron, such as a cell-centroid split and a face-centroid split (Figure3.3(c))

provide us no better results. Even worse, these splits actually increase the valence of each

vertices exponentially throughout the subdivision.

This apparent fallback from the simplicial complex meshes can be overcome by em-

ploying a quasi-regular structure in 3D space. By using the Schläfli symbols, one can



3. SUBDIVISION MESHES 43

deduce that the only structured mesh that involves a regular tetrahedron{3, 3} is the quasi-

regular structure{3, 3
4
} [24]. As the Schl̈afli symbol suggests, the structure consists of

tetrahedra{3, 3} and octahedra{3, 4}. Figure3.3(e) illustrate a typical mesh of{3, 3
4
}. In

fact, this is the only quasi-regular structured mesh in 3D space and is a well-known struc-

ture in mathematics. In particular, we call it anoctet-trussfollowing the naming by an

American architect R. B. Fuller [40]. As shown in Figure3.3(b) and (d), the alternating

cell-splits of tetrahedra and octahedra by edge bisection produced the octet-truss structure.

The result is very regular. Each vertex has always 14 adjacent vertices and each edge has 2

octahedra and 2 tetrahedra around it.

Still there are several issues that should be addressed before utilizing this particular

structure. Specifically, the problems are associated with the subdivision schemes that we

are developing. We address the problems during the derivation of each solid subdivision

scheme that constitutes our Multiresolution Solid Object framework.
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(c) (d)

(b)(a)

(e)

Figure 3.3:Examples of polyhedra splits. (a) A face-split of a triangle. (b) A cell-split of a
tetrahedron. (c) Different types of splits of a tetrahedron. (e) A cell-split of an octahedron.
(f) An octet-truss structure
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Chapter 4

Box-spline based Approximate Solid

Subdivision Scheme

Box splines satisfy many properties that make them good candidates for the subdivision

method. In this chapter, we propose a new solid subdivision scheme based on a special

class of trivariate box splines. The definitions and properties of box splines, the derivation

and generalization of the rules, and brief analysis are presented.

The box-spline based approximate solid subdivision scheme was introduced in a paper

presented in the 7th ACM Symposium on Solid Modeling Applications 2002 [16]. It also

provided a part of the scheme presented in the 9th ACM Symposium on Solid Modeling

Applications 2004 [20]. The complete derivation and detailed analysis of the scheme ap-

pear in a technical report[21] and a paper that is submitted to Computer Aided Geometric

Design for review[19].
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4.1 Introduction and Motivation

There have been several attempts to apply the subdivision method to solid modeling.

The first attempt has been done by MacCracken and Joy [59], followed by the MLCA

scheme by Bajajet al.[4]. These schemes are based on hexahedral meshes in essence,

which is no coincidence since they are derived from the tensor-product of other subdivision

schemes. In fact, the MacCracken and Joy’s scheme and the MLCA scheme are based on

the tensor-product of the Catmull-Clark scheme [14]. There are few exceptions including

the tetrahedral scheme by Schaeferet al.[87]. However, the Schaefer’s tetrahedral scheme

is founded on the structured meshes that we have proposed [16].

Our motivation is to combine the benefits of various existing solid modeling represen-

tations by employing subdivision as its foundation. We base our new subdivision scheme

on trivariate box splines and take advantage of its strong mathematical foundation. In addi-

tion, we utilize non-tensor-product approach to ensure topological freedom. We introduce

the octet-truss structured meshes to take advantage of both the regularity and the flexibil-

ity. For this purpose, we choose a special class of splines who has the recursive property

and whose supports can be easily embedded in the octet-truss structure. We continue to

expand the scheme by generalizing its rules to non-regular cases,i.e.arbitrary tetrahedral

meshes. We use existing subdivision analysis techniques to prove theC1 smoothness of

our subdivision empirically.

4.2 Properties of Box Splines

4.2.1 Definitions

There are several ways to define the box spline. One constructive way is by considering

a projective image of then-dimensional unit cube, orn-cube, in a m-dimensional space
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[11] associated anm×n projection matrixΞ. We will follow the notations and the definition

in the box spline book [29] by de Boor and colleagues. Analytically, we define the box

splineMΞ associated with the matrixΞ as the distribution given by,

MΞ : ϕ 7→ 〈MΞ, ϕ〉 :=

∫
ϕ(Ξt)dt, (4.1)

whereϕ ∈ C(Rm) and = [0, 1)n, the half-open unitn-cube. By decomposingRn =

(ker Ξ)
⊕

(ker Ξ)⊥ and applying Fubini’s Theorem, we can derive that the distribution can

be expressed as

〈MΞ, ϕ〉 :=

∫
ranΞ

ϕ(x)voln−d

(
Ξ−1{x} ∩

)
dx/| det Ξ|, (4.2)

whereranΞ = (ker Ξ)⊥ andd = dim(ranΞ). We identify theMΞ with the function

MΞ(x) = voln−d

(
Ξ−1{x} ∩

)
/| det Ξ|, (4.3)

whenx ∈ ranΞ. At each pointx, the valueMΞ(x) is defined by the volume of the cross-

section area of with Ξ−1{X}, divided by the volume of the projected image of a unit

volume in ranΞ. This intrinsic interpretation is important in understanding subdivision

process.

Finally, the analytic definition leads us to very useful inductive definition. WhenΞ is

invertible (i.e.n = m = d), it is clear thatMΞ is the normalized characteristic function of

Ξ

MΞ =
1

| det Ξ|
χ

Ξ
. (4.4)

In addition, ifΞ ∪ ζ is any matrix formed fromΞ by the addition of the columnζ ∈ Rm,
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the box splineMΞ∪ζ is given by the convolution equation

MΞ∪ζ(x) =

∫ 1

0

MΞ(x− tζ)dt, (4.5)

or simply,

MΞ∪ζ = MΞ ∗Mζ . (4.6)

4.2.2 Geometric Interpretation

In addition to the analytical definition using the directional matrix presented in the

previous chapter, we can define the box splines using purely geometric interpretation. A

boxB of ann-dimensional spaceRn is defined as

B(p,p1,··· ,pn) = {v ∈ Rn | v = p +
∑

j

cjpj, cj ∈ [0, 1]},

wherep is a box vertex andpj are linearly independent vectors inRn that are representing

n edges of ann-dimensional box. If all of thepj ’s are of unit length, we call it a cube or

hypercube.

An affine mapπ : Rn → Rm denotes a projection onto anm-dimensional affine space

Rm. Consider the image ofB(p,p1··· ,pn) with respect to the mapπ. We have

π
(
B

)
= {w ∈ Rm | w = q +

∑
j

cjqj, cj ∈ [0, 1]},

whereq = π(p) andqj = π(pj).
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Sincem < n, it is obvious that theqj ’s are not linearly independent. Hence, the pre-

image of each pointw ∈ Rm forms a non-trivial affine subspace:

π−1(w) = {v ∈ Rn | π(v) = w}, (4.7)

which is called afibre of the mapπ at w. We also derive the fibre by solving the linear

system

c1q1 + c2q2 + · · ·+ cnqn = w − q,

which has dimensiond = n−m.

We now define a box spline as

MB(w) =
vol

(
π−1(w) ∩B

)
vol U(w)

,

whereU is a fixed,d-dimensional unit box parallel to the fibre. Note thatMB has local

support and satisfiesCd continuity inside the support. Finally, the normalized versionNB

is obtained so that it forms a partition of unity over the latticeZm.

This definition is given as a reference purpose. Throughout the chapter, we adhere to

the box-spline notations defined on the previous section.

4.2.3 General Properties

Generally, the box spline has the following properties.

(a) Positive definition: MΞ ≥ 0 and
∫

ranΞ
MΞ = 1

(b) Partition of unity: f(x) =
∑

i∈Zm MΞ(x− i) = 1.

(c) Piecewise polynomial: MΞ is a piecewise polynomial of degreen−m.
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p2

p1

p3

p fibre π−1(w)π

N1,1,1

box B(p, p1, p2, p3)

w

x

Figure 4.1:Box spline as a projection.

(d) Continuity: MΞ is aCn−ñ−2 function, wherẽn is the maximal number of columns of

Ξ that does not spanRm.

We refer the readers who are interested in the proofs of the properties to the Box Spline

book [29] by de Booret al.. In addition to the properties aforementioned, a box spline

can be expressed by the linear combination of the integer shifts of the box splines with the

support of a half-size. It can be formulated as

MΞ(x) =
∑
i∈Zm

siMΞ(2x− i). (4.8)

The formula is called asubdivisionformula. Thesi ∈ R is called asubdivisioncoeffi-

cient, and the process is called asubdivision algorithm.
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The simplest case is whenΞ = E, the m × m identity matrix. It is obvious that

ME = χ
E

, and it has a simple subdivision formula,

ME(x) =
∑
i∈Zm

ME(2x− i). (4.9)

We can easily derive subdivision formulae for the other box splines by using the con-

volution equation (4.5) and the following theorem.

Theorem 4.1. SupposeMΞ has a subdivision formulaMΞ =
∑

i siMΞ(2x − i) andΦ =

Ξ ∪ ζ, whereζ is a column vector inZm. ThenMΦ satisfies the following subdivision

formula,

MΦ(x) =
1

2

∑
i

(si + si−ζ)MΦ(2x− i). (4.10)

Proof 4.1. By the convolution formula,

MΦ(x) =

∫ 1

0

MΞ(x− tζ)dt

=

∫ 1

0

∑
i

siMΞ(2(x− tζ)− i)dt

=
1

2

∑
i

si

∫ 2

0

MΞ(2x− i− uζ)du

=
1

2

∑
i

[
si

∫ 1

0

MΞ(2x− i− uζ)du + si

∫ 2

1

MΞ(2x− i− uζ)du
]

=
1

2

∑
i

[
siMΦ(2x− i) + si

∫ 1

0

MΞ(2x− i− ζ − uζ)du
]

=
1

2

∑
i

[
siMΦ(2x− i) + siMΦ(2x− i− ζ)

]
=

1

2

∑
i

(si + si−ζ)MΦ(2x− i).

Even though it is possible to derive the subdivision rules for a particular box spline

by Theorem4.1, it is more convenient to inspect the coefficients themselves, as a discrete
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convolution. (See [97]). We explain the method in the next section.

4.3 Generating Functions for Subdivision

4.3.1 Generating Function Method

A subdivision algorithm can be considered as the discrete convolution among poly-

nomials (See [97], [38]). Once the relation between the subdivision coefficients and the

polynomials (usually calledgenerating function) are established, the subdivision formula

can be acquired systematically.

For example, the univariate B-spline function of degree 0B0(t) has the trivial subdivi-

sion formula which can be expressed as

B0(t) = B0(2t) + B0(2t− 1). (4.11)

In addition, B-splines can be defined by successive convolution [29]. For univariate case,

the definition of B-splineBn(t) of degreen can be described as the following:

B0(t) = 1 if t ∈ [0, 1), B0(t) = 0 otherwise. (4.12)

Bn+1(t) = Bn(t) ∗B0(t). (4.13)

The convolution operator∗ between functionsf andg is defined as

(f ∗ g)(t) =

∫
f(τ)g(t− τ)dτ . (4.14)

From this definition, we can directly derive arefinement equation[107] which is essential
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to the subdivision process for B-spline curves. The equation is given by

Bn(t) =
1

2n

n+1∑
k=0

(
n + 1

k

)
Bn(2t− k). (4.15)

Now, we associate the formal generating functionfB0(z) = 1 + z with the spline.

It is done by associating the translations in the subdivision formula and their coefficients

with the powers ofz and their coefficients. It has been proven [107, 97] that if f andg

are associated generating functions for the subdivision ruleA(t) =
∑

aiA(2t − i) and

B(t) =
∑

bjB(2t− j), then the subdivision formulaC for the convolution ofA andB is

C(t) =
∑

ckC(2t−k) whereck’s can be found by comparing the coefficients of its formal

generating functionh(z) = 1
2
f(z)g(z). By using Equation4.13, or the recursive definition,

we can easily find that the generating function of the spline of degreen is

fBn(z) =
1

2n
(1 + z)n+1. (4.16)

We can easily verify that the coefficients acquired from Equation4.16match exactly with

the coefficients from Equation4.15, by using binomial expansion.

In specific, The Chaikin’s algorithm is quadratic case of the univariate B-spline curve.

Therefore, by lettingn = 2, we have the generating function:

fB2(z) =
1

4
(1 + 3z + 3z3 + z3), (4.17)

which can be reorganized as

fB2(z) =
(1

4
+

3z2

4

)
+

(3z

4
+

z3

4

)
. (4.18)

The coefficients for this formula are exactly corresponding to the well-known subdivision
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coefficients of the Chaikin’s algorithm (Figure4.2).

Figure 4.2:The subdivision coefficients for Chaikin’s algorithm.

4.3.2 Generating Functions for Box-spline Subdivision

We will associate a subdivision formula for box splines with a multivariate polynomial

which represents the generating function. Suppose the box splineMΞ has a subdivision

formulaMΞ =
∑

i siMΞ(2 · −i), then we assign,

fΞ(z) =
∑
i∈Zm

siz
i, (4.19)

to its generating function, wherez = (z1, · · · , zm) andzi = (z1
i1 , . . . , zm

im). It is clear to

see that one can derive the analog of Theorem4.1for the generating function, as following:

Corollary 4.1. SupposeMΞ has a subdivision formula associated with a generating func-

tion fΞ(z) =
∑

i∈Zm siz
i. If Φ = Ξ ∪ ζ, thenMΦ has a subdivision formula whose gener-

ating function is

fΦ(z) =
1

2

∑
i∈Zm

(si + si−ζ)z
i, (4.20)

The result of Corollary4.1 can be rewritten asfΦ(z) = 1
2
(1 + zζ)fΞ(z). By applying

Corollary4.1recursively, we can acquire the following general formula for the box splines.
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Corollary 4.2. For any box splineMΞ represented by the directional matrixΞ, its gener-

ating functionfΞ can be written as

fΞ(z) =
1

2d−k

∏
ζ

(1 + zζ), (4.21)

whered is the number of columns in the matrixΞ andζ is each column vector ofΞ.

For the proofs and further discussion on generation functions, we refer readers to the book

by Warrenet al.([97]).

4.4 Derivation of Solid Subdivision Scheme

4.4.1 Double Directional Box Splines

We focus on the particular box spline of our interest, namely, thedouble directional

box splines for our subdivision scheme. First, we consider a piecewise linear box spline

function. SupposeΞ1 = E ∪ δ, whereδ = [1, · · · , 1] ∈ Rm. Then,MΞ1 forms a piecewise

linear function overRm. The support of the spine function is the form of two unit squares,

or cubes, sharing one vertex, with additional edges that join corresponding vertices in each.

The double directional box spline can be understood as a projection of the unit2(m+1)-

cube intoRm, as previously mentioned. The spline can be defined by the directional matrix

Ξ2 = Ξ1 ∪ Ξ1. Since the matrix projects a pair of edges into the same place inRm, the

support of the double directional box spline is the exactly same shape as the piecewise

linear box spline. The supports for the cases ofm = 1 andm = 2 are shown in Figure4.3.

For example, the Loop’s scheme employs the bivariate double directional box spline. In

this case, the directional matrix isΞ = {(1, 0), (0, 1), (1, 1), (1, 0), (0, 1), (1, 1)}, therefore
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(c) (d)(b)(a)

Figure 4.3:The supports of the box splines and their subdivision.

the generating function is

fΞ(z1, z2) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2, (4.22)

which can be deduced from Corollary4.2.

In our research, we restrict ourselves to the case ofR3, which represents solid objects

in R3. By applying Corollary4.2 to the directional matrixΞ2 in 3-dimensional case, we

acquire the following generating function:

fΞ2(z1, z2, z3) =
1

32
(1 + z1)

2(1 + z2)
2(1 + z3)

2(1 + z1z2z3)
2. (4.23)

The coefficient of each polynomial termzi1
1 zi2

2 zi3
3 represents the weight value for the sub-

division algorithm at(i1, i2, i3) in Z3.

4.4.2 Regular Subdivision Masks

To derive the subdivision rules for the regular cases systematically, we proceed with the

following steps:

(a) Compute the generating function of the subdivision algorithm.
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(b) Associate the acquired subdivision coefficients withZm by the power of their polyno-

mial terms. For instance, if the coefficientc is for the termzi = (z1
i1 , · · · , zm

im), thec

is assigned to the lattice pointi = (i1, · · · , im).

(c) Index a part of our subdivision mesh properly so that we can establish one-to-one

correspondence between the non-zero coefficients and the mesh vertices.

(d) Extract the subdivision masks for the vertices, edges, and cells if necessary.

(e) Reduce the number of the masks by considering rotational symmetry.

We start with the Loop’s scheme as an example. As shown in Fig-

ure 4.3, the projected image of the subdivided 6-cube by the matrixΞ =

{(1, 0), (0, 1), (1, 1), (1, 0), (0, 1), (1, 1)} are the shape of a hexahedron, and its coefficients

can be properly embedded in 2-ring vertex neighbor of{3, 6} structure. From Equation

4.22, we acquire the subdivision coefficients and place them on the part ofZ2 as shown in

Figure4.4(a). We establish one-to-one correspondence with the{3, 6} structure by simply

adding diagonal edges.

1

1 1
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6 6

6 6
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11
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6
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2

2

(b)(a) (c)

Figure 4.4:(a) The subdivision coefficients of the Loop’s scheme are embedded in the part
of the{3, 6} regular structured mesh. (b) and (c) The extracted vertex and edge masks. All
the values are to be multiplied by1

16
.
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Now we can extract the subdivision masks. For vertex cases, we consider the center

vertex as our vertex point. Since we are performing the subdivision using the edge bisec-

tion, the edges of our masks should have the size of two in each direction. Therefore, we

can extract the Loop’s subdivision mask for regular vertices, shown in Figure4.4 (b). For

edge cases, we consider newly introduced edge point is on the center. Then there are 3

choices of the length 2 edges and the associated masks, shown in Figure4.4 (c). Since all

these masks are identical upon the rotation of the degree2π
3

, we can reduce them into a

single edge subdivision mask.

(1,1,0,0)

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,1,1,0)
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y+

z+

(0,0,0,1)

(1,1,0,1)
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u4
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Figure 4.5:The projected image of 8-cube by the directional matrixΞ2.
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Figure 4.6:(a) The projected image of the hypercube. (b) New edges (red) are added to
make proper polyhedral decomposition. (c) The one-to-one correspondence with a part of
the octet-truss mesh.
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Figure 4.7:The decomposition of the hypercube image with the additional edges (red).

The extraction of the subdivision masks from our double 4-directional box spline are

far more complicated than the Loop’s scheme. First, consider the projected image of 8-

cube by the directional matrixΞ2 (Figure4.5). Actually, the boundary of the image forms a

space-filling rhombic dodecahedron. However, if you consider the other edges, it does not

admit any proper polyhedral decomposition. Therefore, we have to add few more edges

(Figure4.6 (b)), so that we get proper polyhedral decomposition (Figure4.7), as well as

the one-to-one correspondence with a part of the octet-truss mesh (Figure4.6 (c)). Now,

we consider the one level subdivision of the mesh and assign the subdivision coefficients

from Equation4.23 on the vertices as shown in FigureA.1 in AppendixA. During the

mask extraction, one should be cautious that there are edges between each layers as well

as vertices within the same layer. In fact, all diagonals in FigureA.1 represent the edges
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between layers, except the blue diagonals in the third layer. FigureA.2 in AppendixA

displays the vertex masks for our subdivision scheme. The edge masks are shown from

FigureA.3 to FigureA.8 in AppendixA. Unlike the Loop’s scheme, we have two types of

the edge masks which are not identical by rotation. The edge masks (a), (b), (c), and (d)

have 6 neighbors in addition to each end point of the edge, whereas the edge masks (e) and

(f) only have 4 neighbors. In fact, The masks (e) and (f) are similar to the cell mask, shown

in FigureA.9. This occurs because of the unified direction choice of the diagonal in each

octahedron, which are shown as blue edges in the figures. Note that the original octet-truss

mesh and its subdivision does not requires the choice of the diagonal inside the octahedral

cells. However, during the assignment of the coefficients onto the mesh, we need to choose

one particular direction (defined by the octahedral diagonal), because of the asymmetry of

the projected image of the 8-cube in 3D space.

We call this choice of the octahedral diagonal as themajor diagonal. Moreover, we

have to choose the diagonal in such way that no vertex is shared by more than two major

diagonals. This causes a problem in the implementation of the subdivision scheme. We

will discuss more about the implementation issues in the upcoming sections.

Definition 4.1. For each octahedral cell[xi, ...,xi+5] that comprises the mesh, we choose

one pair of vertices{xj1 ,xj2}which are not adjacent. The pair is called themajor diagonal

and is denoted bym = [xj1 ,xj2 ]. We choose the major diagonals in such way that for any

vertex in the mesh, it is not shared by more than two major diagonals. When subdividing,

sub-octahedral cells inherit the directions of the major diagonals from their parent cells.

4.4.3 Regular Subdivision Rules

Since we have already identified the subdivision masks, it is relatively trivial to present

the regular subdivision rules for our scheme. The rules reduce into one vertex rule, two
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edge rules and one cell rule.ρ(·) denotes the one-neighbor of the adjacent vertices of a

vertex or an edge. We emphasize that the adjacency is defined by the existence of an edge

or a major diagonal, not a cell. More precisely:

Definition 4.2. For each vertexxi, we sayxj ∈ ρ(xi) if and only if there exists an edge

e = [xi,xj] or a major diagonal within an octahedral cell,m = [xi,xj].

For each edgeei = [xi,xi+1], we sayxj ∈ ρ(ei) if and only if there exists an edge

e = [xk,xj] or a major diagonal within an octahedral cell,m = [xk,xj] for bothk = 1, 2.

4.4.3.1 Vertex Rule

Each regular vertexxi has the valence of 14. It is shared by 6 octahedra and 8 tetrahedra.

However, because of the choice of the major diagonals that satisfy Definition4.1 and the

definition of neighbors by Definition4.2, we have only 14 adjacent vertices to be counted.

Therefore, we introduce new vertex pointvnew by:

vnew =
1

32

{
18xi +

∑
xj∈ρ(xi)

xj

}
. (4.24)

4.4.3.2 Edge Rules

Each edgeei = [xi,xi+1] is shared by 2 octahedra and 2 tetrahedra. According to the

position of the major diagonals of the octahedra, there are two types of the regular edge

rules to compute new edge pointenew (Figure4.8). If |ρ(ei)| = 6 then,

enew =
1

32

{
10(xi + xi+1) + 2

∑
xj∈ρ(ei)

xj

}
. (4.25)

If |ρ(ei)| = 4 then,

enew =
1

32

{
8(xi + xi+1) + 4

∑
xj∈ρ(ei)

xj

}
. (4.26)
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4.4.3.3 Cell Rule

For each octahedral cell[xi0 , ...,xi+5] with the major diagonalm = [xj1 ,xj2 ], the new

cell pointcnew is computed by:

cnew =
1

32

{
4(xi0 + · · ·+ xi+5) + 4(xj1 + xj2)

}
. (4.27)
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Figure 4.8:The regular subdivision rules for the box-spline based solid subdivision. The
red dashed edges indicate the major diagonals.

4.5 Generalization of Solid Subdivision Scheme

From the regular subdivision rules that are defined over the structured meshes based

on the octet-truss, we extend our scheme to arbitrary tetrahedral meshes. Unlike the octet-

truss, where each vertex and edge have a regular number of adjacent vertices, we can have

arbitrary number of vertices adjacent to vertices and edges in the tetrahedral mesh. How-

ever, once subdivided, the sub-structure inside each cell becomes regular again. In fact, the

same situation happens even for subdivision surfaces. Figure4.11(b) shows an extraordi-

nary vertex with the valencem and its subdivision rule. In solid schemes, the extraordinary
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Figure 4.9:The regular subdivision rules for the box-spline based solid subdivision. The
vertices are in general position. (a) shows only the upper portion of the mask. The red
dotted edges indicate the major diagonals. The grey cells are tetrahedral.

cases include not one but two different types of irregularity. One is the extraordinary vertex

cases, Another is the extraordinary edge case.

4.5.1 Extraordinary Subdivision Rules

The following generalization of the subdivision rules are based on spatial averaging.

They require analysis to guarantee a certain level of smoothness across the extraordinary

topologies.
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4.5.1.1 Vertex Rule

Similar to surface schemes, an arbitrary tetrahedral mesh can contain extraordinary

vertices as shown in Figure4.10(a). Suppose the valence of the vertexx ism (|ρ(xi)| = m),

then our vertex rule can be rewritten as:

vnew =
9

16
xi +

7

16m

∑
xj∈ρ(xi)

xj. (4.28)

4.5.1.2 Edge Rules

The extraordinary edge case is not present in subdivision surfaces. Suppose the edge

e = [xi,xi+1] is surrounded bym vertices (|ρ(ei)| = m), then the edge rule is modified as

follows:

enew =
5

16
(xi + xi+1) +

3

8m

∑
xj∈ρ(ei)

xj. (4.29)

4.5.2 Boundary Representation

Unlike surfaces which do not have to contain the boundaries in 3D, solid objects should

have boundaries in 3D space. Therefore, we need to employ special rules to represent the

boundaries of our solid objects. We simply use the modified Loop’s scheme (Figure4.11)

to represent boundaries. Because of the small sizes of our subdivision masks, there is no

apparent trouble between the transition area of the boundary and the interior.

4.6 Analysis of Arbitrary Topology

By definition, our scheme isC2-continuous on the octet-truss structured meshes, since

it evaluates the trivariate double-directional box spline functions defined on each regular

vertex. Figure4.12shows a single basis function evaluated by our subdivision algorithm
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Figure 4.10:The extraordinary subdivision rules for the box-spline based solid subdivision.
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Figure 4.11:The boundary subdivision rules for the the box-spline based solid subdivision.
It is basically the same rules as the Loop’s scheme.

on the regular mesh. Figure4.12(a) shows the density of the basis function cut by thex-y

plane. Figure4.12(b) is the iso-contour lines of the same function. Since we choose the

direction of the liney = x as our major diagonal direction, the shape is symmetry along the

line. Figure4.12(c) is the function value and the directional derivative∂f
∂x

along thex-axis.

The plot data are from the 4th level of subdivision. The derivative is acquired by the central

differences of the discrete data.

The convergence and the continuity across the extraordinary topology requires separate

analysis. Many researchers have been working on the subdivision analysis near extraor-

dinary topology, especially for the subdivision surfaces. For instance, [38, 32, 37], [64],

[78, 82, 80, 79, 81], [84, 83], [108, 104, 105, 106], and most recently [55] investigated the
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Figure 4.12: The basis function of the subdivision algorithm on the regular mesh. (a)
The density values of the basis function over thex-y plane. (b) The iso-contour lines of
the density. (c) The function value and its directional derivative along thex-axis. The
derivative values have been re-scaled.

sufficient and necessary conditions of the convergence and theC1-continuity for various

subdivision curves and surfaces. Two major techniques of such analysis are the spectral

analysis of subdivision matrices and the characteristic map method by [84]. Unfortunately,

these analysis techniques for subdivision surfaces are not fully extended to the solid subdi-

vision algorithms and there is no known method specially developed for the solid schemes.

Hence, we approach this situation as follows:

(a) Categorize the extraordinary cases for the solid subdivision algorithm.

(b) For each case, compute the subdivision matrix.

(c) Perform the spectral analysis of the subdivision matrix numerically.

(d) Construct the characteristic map and confirm the satisfactory conditions for theC1-

continuity through empirical data.

Even though these steps do not guarantee the continuity of the subdivision algorithm on

every possible case, they suggest a strong evidence that our subdivision algorithm is indeed

C1-continuous for many situations, especially that can be occurred in real-world.
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Since our subdivision algorithm is based only on stationary linear combinations, we

can describe the subdivision process of each step as a simple matrix computation:

pj+1 = Spj, (4.30)

wherepj = [pj
0, ...,p

j
N ]T is a matrix of control points aroundpj

0 at the subdivision level

j. The numberN of the control points is determined so that the linear system is invariant.

In our case, we need 2 rings of vertex neighbors.

4.6.1 Subdivision Matrix
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Figure 4.13:The invariant neighborhood of an extraordinary vertex and their indices.

We begin the analysis with computing the subdivision matrix for each extraordinary

case. We first examine the case of extraordinary vertices. This case involves a vertex withk

vertices adjacent to it. As shown in Figure4.13, we can establish a correspondence between

thek adjacent vertices andk vertices on the sphere centered by the extraordinary vertexpj
0.

By considering different triangulations of thek vertices, we can understand the different

configurations of the extraordinary vertex subdivision matrix. Each triangle is associated
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with the tetrahedral area that is surrounding the extraordinary vertex. Because we need 2-

ring vertex neighbors to acquire the invariant system, we subdivide each tetrahedron once,

as illustrated in Figure4.13. Using the Poincaré formula and the relation between triangular

faces and edges:

v − e + f = 2,

2e = 3f,

we can deduce that the number of such tetrahedral area surrounding the vertex isf =

2(k − 2). In addition, the 1-ring vertex neighbor containsk vertices and each subdivided

triangular faces on the 2-ring vertex neighbor contains 6 vertices, 3 of which are shared

by each edge. Therefore, the actual numberN of the vertices including the extraordinary

vertex to form the invariant system is:

N = 1 + k + 6f − 3e + k

= 1 + k + 6(2k − 4)− 3(3k − 6) + k = 5k − 5.

Hence, we can conclude that the size of the subdivision matrix for each extraordinary vertex

with the valencek is N × N whereN = 5k − 5. With a proper reordering of the indexes

of the vertices, the matrixSv can be written as:

Sv =

M O

A B

 ,

whereM is a(k+1)×(k+1) matrix andO is the square zero matrix with the size of4k−6.

We use the spherical coordinates to define an order between vertices. It is important to know

that the dominant and the subdominant eigenvalues of theSv, especially the first 5 largest
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eigenvalues, are identical to those of the submatrixM. Since the matrixM can be easily

acquired by thek 1-ring vertex neighbors of the vertexpj
0, we can reduce the amounts

of the computations during the analysis process significantly. It is worth mentioning that,

unlike the surface cases, there exist several different configurations of neighboring vertices

for each valencek. In fact, it is related to the planar triangulation ofk points and the

recent result by [86] suggests that the upper bound for the number of the configurations is

O(59nn−6) for largen. Since each configuration yields a unique subdivision matrix, it is

difficult to compute the eigensystem systematically.

The extraordinary edge with the valencek is surrounded byk tetrahedra sharing the

edgee = [pj
0,p

j
2], as shown in Figure4.14. Again, we subdivide each tetrahedron once

to make the neighbor invariant. It is easy to deduce that the size of the subdivision matrix

Se is (4k+3)× (4k+3). Similar to the extraordinary vertex subdivision matrix, the matrix

Se can be described as:

Se =

L O

P Q

 ,

with the proper index reordering. In the edge case,L is a (2k + 3) × (2k + 3) matrix. It

consists of the subdivision coefficients of the 1-ring neighbors of the extraordinary edge.

Once more, the dominant and subdominant eigenvalues of the subdivision matrixSe can be

acquired from the submatrixL. The subdivision matrixSe and its eigensystem can differ

by the choice of the major diagonals. It will be discussed in the next section.

4.6.2 Prerequisites

There is a question to be answered before continuing the spectral analysis. It is the

question about the face-to-face case between the tetrahedral cells. Even though a tetrahe-

dron always faces with an octahedron and vice versa in the regular octet-truss meshes, this
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Figure 4.14:The invariant neighborhood of an extraordinary edge and their indices.

property does not hold in general. Especially, an arbitrary tetrahedral mesh does not satisfy

it at all. Once subdivided, the interior of each tetrahedron becomes the regular octet-truss

structure. However, the faces shared by two tetrahedra initially given by the mesh remain

the same during the subdivision processes. In fact, in the paper [87], Schaeferet al. re-

solved the issue by applying the joint spectral radius test by [55]. Our situation is slightly

different, since their rules are based on the cell-averaging, while ours are based on the ver-

tex and edge-averaging. Moreover, the choice of the major diagonals plays a major role to

keep the structures in the shared face regular.

We have taken a simpler approach to guarantee the continuity of the face-to-face case.

We argue that, with the proper choice of the major diagonals as defined in Definition4.1,

the vertices and edges on the shared face admit the subdivision matrices of the regular

cases. We begin with two tetrahedra as shown in Figure4.15(a). To acquire the invariant

neighbors for each vertex in the shared face, we subdivide the tetrahedra 3 times. The 1-

ring vertex neighbor of each yellow vertex in Figure4.15(b) consists of 6 adjacent vertices

on the face and 2 adjacent vertices in each facing tetrahedron. In addition, we can have

2 more adjacent vertices, decided by the choice of the major diagonals. Therefore, each

vertex has 14 neighbors in total which form a regular vertex case. For the shared edges,
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each edge on the shared face is surrounded by two adjoining octahedra and two adjoining

tetrahedra. If we choose the major diagonals of the two octahedraproperly, we can prove

that each edge has the correct number of neighbors, either 6 or 4, with respect to its relative

position against both major diagonals. All the possible cases are illustrated in Figure4.16.

In Figure4.16(a) and (b), the edge has 6 neighbors, whereas it has 4 neighbors in Figure

4.16(c).

(b) (c)(a)

Figure 4.15:An example of the face-to-face case. (a) Two tetrahedra share the face. The
orange-colored faces indicate the faces from octahedral cells. (b) The vertices in between.
The yellow vertices has 14 neighbors with the correct choice of the major diagonals. (c)
The 2-ring neighbor of the shared vertex.

(a) (b) (c)

Figure 4.16:The different neighbors of the edge between faces by the proper choices of
the major diagonals. The red dotted lines are the major diagonals.

We support our argument with some empirical results. Figure4.17offers a visual con-

firmation on the continuity between the tetrahedra. We evaluate the basis function centered

on one of the shared vertices in between. The shared face of the two tetrahedra are located

on thex-y plane. One tetrahedron is placed on the negativez side, while the other is placed
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on the positive side. The major diagonals of the tetrahedra are chosen so that it is in the

proper situation defined in Definition4.1. The values are evaluated from the 3 levels of the

subdivision algorithm. Figure4.17shows very smooth transition between one tetrahedron

to another.
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Figure 4.17:Evaluation of the face-to-face case. (a) The density values of the basis function
centered on the shared vertex over they-z plane. (b) The iso-contour lines of the density.
(c) The function value and its directional derivative along thez-axis. The derivative values
are re-scaled.

The face-to-face case entails the question of the choice of the major diagonals in arbi-

trary meshes. The above results suggest that the proper choice of the major diagonals are

important for the continuity of the face-to-face case. It is possible that the choice cannot

satisfy the properties in Definition4.1globally for certain meshes. Thus, we should imple-

ment the algorithm carefully so that the choice is as proper as possible at the initial stage.

We discuss it in Section4.8.

4.6.3 Spectral Analysis

Suppose the matrixS has the eigenvaluesλ0 ≥ · · · ≥ λl in non-increasing order with

the associated eigenvectorsv0, ...,vl. The matrixS is N ×N matrix and each eigenvectors



4. BOX-SPLINE BASED APPROXIMATE SOLID SUBDIVISION SCHEME 73

are inRN . Now, the original control pointsp0 can be rewritten in the eigenspace:

p0 =
∑

i

aivi, (4.31)

and therefore, any levelj verticespj can be represented by:

pj = Sjp0 =
∑

i

(λi)
jaivi, (4.32)

with each coordinate coefficient matrixai. The coefficientai can be computed byai =

vi · p0. The conditions of the eigenvalues and eigenvectors for the subdivision matrix

are well understood and it is independent for each coordinate operation. Therefore, we

hypothesize that the similar conditions still hold for our solid scheme. The conditions are

as follows:

(a) λ0 should be equal to 1 for the subdivision to be invariant with respect to translations

and rotations.

(b) λi should be strictly less than 1 whenj > 0 for the convergence of the scheme. The

limit positions for the original control points is then

p0 = lim
j→∞

pj =
∑

i

(
lim

j
(λi)

jaivi

)
= a0v0. (4.33)

(c) λ4 should be strictly less thanλ3. Suppose the subdominant eigenvaluesλ1 = λ2 =

λ3 = λ > λ4 and the vertexp0
0 is the origin. Then we get:

pj

λj
= a1v1 + a2v2 + a3v3 + a4

(λ4

λ

)j

+ · · · , (4.34)

which means the control points are approaching a fixed configuration up to a scaling
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factorλj. The remainders converge to zero in the limit sinceλ > λj for j ≥ 4. From

this observation, we can derive that the three subdominant eigenvalues determine the

behavior of the derivatives atp0
0 in the limit. This is a sufficient condition to define

the characteristic map.

To verify these conditions, eigenvalues and eigenvectors of each subdivision matrix

should be computed. As first observed in [31], the subdivision matrix for an extraordinary

vertex in surfaces cases has a cyclic structure due to its planar symmetry. Therefore, we

can apply discrete Fourier transform to compute the eigenstructure of every valence sys-

tematically. Unfortunately, this is no longer true for the solid cases, as discussed in the

previous section. Hence, we need to rely on numerical computation of the eigenstructure

for specific cases. Since we cannot compute all the possible cases, we begin with statistics

on vertex and edge valences of arbitrary tetrahedral meshes to determine which valence

numbers should be included in our analysis. We choose few existing tetrahedral models

(Figure4.18) to examine the valence numbers for each vertex and edge. The meshes are

acquired by various tessellation methods including the 3D Delaunay triangulation and the

advance front technique.

(a) (b) (c)

Figure 4.18:A selection of arbitrary tetrahedral meshes. (a) A cross-section of a fighter
model with its environment (fighter). (b) Tesselated Stanford bunny (bunny). (c) A model
of a mechanical part (spx)
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As Figure4.19Table4.18show, the distribution of the valence numbers are concen-

trated on the regular valence numbers. Moreover, the averages are very close to the regular

valence numbers and the deviations are relatively small. These results suggest that in real

world application, we only need to analyze relatively small number of valence cases. In

this paper, we choose to analyze the valence number from 5 to 22 for the extraordinary

vertices and the valence number from 4 to 9 for the extraordinary edges.
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Figure 4.19:Histogram of the valence numbers of the selected arbitrary meshes. (a) Vertex
valence. (b) Edge valence.

Model
name

No.
vertices

No.
edges

No.
cells

V−val
average

V−val
maximum

E−val
average

E−val
maximum

fighter 13832 87587 70125 13.75 33 5.12 10
bunny 575 2904 1903 13.95 23 5.06 7
spx 2896 17212 12936 13.65 23 5.09 9

Table 4.1:Statistics on the valence numbers of the selected arbitrary meshes

Table4.2presents the list of the first 6 eigenvalues of the selected extraordinary vertex

cases. As we have mentioned, there exist several different configurations for each valence.

We only show few cases in the table. Table4.3 shows the list of the first 6 eigenvalues

of the selected extraordinary edge cases. Unlike the vertex cases, each valence has unique

configuration. However, it differs by the choice of the major diagonals. Figure4.20shows
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two different choices of the major diagonals for the extraordinary edge with the valence 9.

In the first row, the diagonals are chosen such that they are in skew positions mutually. In

the second row, the diagonals point toward the center of the extraordinary edge. As Figure

4.20(b) and (c) suggest, the first choice yields much smoother results. The eigenvalues of

the first case are shown in Table4.3, whereas the 6 dominant eigenvalues of the second

case are:

{1., 0.619939, 0.619939, 0.528431, 0.528431, 0.5}.

The difference between two cases becomes more apparent as the valence is getting higher.

In fact, the characteristic map of the second case fails to confirmC1 continuity for the va-

lence larger than 8, as discussed in the next section. The values in Table4.3are taken from

the configurations similar to the skew case for each valence. During the implementation

of the subdivision algorithm, we try to optimize the choice of the major diagonals so that

it produces the similar result as the first row for the most of the extraordinary edges. In

AppendixB, we present the subdivision matrices and their eigenvalues for the lowest va-

lence cases in the tables. Two different choices of the major diagonals and their subdivision

matrices are shown in SectionB.2.

It is clear from the computed values that the eigenvalues of the most of the extraordinary

cases satisfy the eigenvalues conditions for subdivision algorithms. However, the results

so far only guarantee the convergence of the subdivision algorithm at the particular vertex

or edge. In the next step, we examine the characteristic map of each case to verifyC1

continuity near the extraordinary vertex or edge.

4.6.4 Characteristic Map

If the eigenvalues satisfyλ0 = 1  λ1 ≥ λ2 ≥ λ3  λ4, we are able to apply

the characteristic map method by [84] to proveC1 continuity. From the real eigenvectors
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Valence λ0 λ1 λ2 λ3 λ4 λ5

5 1. 0.3125 0.292083 0.15 0.125 0.125
6 1. 0.312499 0.25 0.25 0.25 0.15
7 1. 0.327254 0.327254 0.3125 0.275888 0.15
8(a) 1. 0.480205 0.3125 0.3125 0.249998 0.2375
8(b) 1. 0.375 0.375 0.3125 0.270178 0.15
9 1. 0.405872 0.405872 0.3125 0.26545 0.19437
10(a) 1. 0.477404 0.418566 0.418566 0.2375 0.206434
10(b) 1. 0.426777 0.426777 0.3125 0.261451 0.25
11 1. 0.441511 0.441511 0.3125 0.293412 0.293412
12 1. 0.480205 0.480205 0.480205 0.250002 0.2375
13 1. 0.460313 0.460313 0.353854 0.353854 0.3125
14(a) 1. 0.577132 0.449431 0.449431 0.34832 0.3125
14(b) 1. 0.517404 0.517404 0.480205 0.3125 0.3125
15 1. 0.471364 0.471364 0.392016 0.392016 0.3125
16 1. 0.541169 0.541169 0.480204 0.372645 0.372645
17 1. 0.571212 0.511703 0.511703 0.371472 0.358853
18(a) 1. 0.623289 0.463128 0.463128 0.457191 0.374739
18(b) 1. 0.557148 0.557148 0.480205 0.418566 0.418566
20(a) 1. 0.571212 0.549072 0.549072 0.3875 0.3875
20(b) 1. 0.568361 0.568361 0.480206 0.453454 0.453454
22 1. 0.616629 0.525774 0.525774 0.4625 0.427853
22(b) 1. 0.576511 0.576511 0.480205 0.480205 0.480205

Table 4.2:Eigenvalues for a selection of the extraordinary vertex cases.

Valence λ0 λ1 λ2 λ3 λ4 λ5

4 1. 0.477404 0.418566 0.418566 0.2375 0.206434
5 1. 0.480205 0.480205 0.480205 0.25 0.2375
6 1. 0.517404 0.517404 0.480205 0.3125 0.3125
7 1. 0.541169 0.541169 0.480204 0.372645 0.372645
8 1. 0.557148 0.557148 0.480205 0.418566 0.418566
9 1. 0.568361 0.568361 0.480206 0.453454 0.453454

Table 4.3:Eigenvalues for a selection of the extraordinary edge cases.

v1,v2,v3 associated with the first 3 subdominant eigenvalues, we define a map:

Ψ = N [v1,v2,v3] : U × Zk −→ R3, (4.35)

WhereU is a unit simplex in 3D pivoted on the origin with the corner containing the origin

has been removed at the half points of the edges. Figure4.21illustrates an example of the

control net of the characteristic map and its cross-section. Note that the characteristic map

by Reifet al.is originally defined on 2D space. We generalize the map to the solid case and
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Figure 4.20:Two different choices of the major diagonals for the extraordinary edge with
the valence 9. (a) The different choices of the major diagonals indicated in the red lines.
(b) The density values. (c) The Iso-contour lines.

assume that it is correct without any proof. Now, we presume that if we can prove that the

characteristic mapΨ is regular and injective, then our subdivision algorithm satisfiesC1

continuous. For 2D, the regularity and injectivity can be proven by considering the complex

plane. However, due to lack of any planar symmetry in general, the direct analogy of the

method has been proven to be difficult in 3D. Instead, we rely on the experimental results

to conform its regularity and injectivity. For the selected cases, we perform the subdivision

and prolongation [84] successively, up to certain levels, followed by the visual inspection

of the results. In most cases, it has been relatively easy to deduce that the process will not

produce any irregularity or self-intersections. In contrast, Figure4.24shows the character-

istic maps for the valence 9 and 11 cases with specific choice of the major diagonals. In

these cases, the diagonals are chosen to point toward the center, as shown in the second

case of Figure4.20. During the subdivision and prolongation process, the maps form a

single saddle surface and therefore they are not injective. In these two cases, we cannot
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determine theC1 continuous of the subdivision algorithm near the extraordinary edges by

the characteristic map method.

(a) (b)

Figure 4.21:The control net of the characteristic map of the extraordinary vertex with the
valence 11. (a) The control net. (b) The cross-section of the control net.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4.22:Control nets for a selection of the characteristic maps of the extraordinary
vertex with the valences from 7 to 22. The orange-colored faces indicate the faces from
octahedral cells.

4.7 Averaged Subdivision Scheme

As proven in the previous sections, the choice of the major diagonal plays major role

over both the regular structured meshes and the analysis over arbitrary tetrahedral meshes.
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(a) (b) (c) (d) (e) (f)

Figure 4.23:Control nets for a selection of the characteristic maps of the extraordinary
edges with the valences from 4 to 9. The orange-colored faces indicate the faces from
octahedral cells.

(a) (b) (c) (d)

Figure 4.24:The characteristic maps for the extraordinary edges with the valences 9 and
11. The major diagonals are chosen to point toward the center. The maps are not injective.
(a-b) The valence 9 case. (c-d) The valence 11 case.

However, there are some disadvantage involving the diagonals. First, for an arbitrary mesh,

MAJOR-DIAGONAL -CHOOSE(Algorithm 4.2) does not return proper choice of the major

diagonalsglobally, in general. Secondly, it requires meticulous bookkeeping on the entire

meshes and across the subdivision levels. Finally, it generates some “favored” direction

in the represented object, which can cause asymmetry. It is obvious because the basis

function, or the box spline, produced by the subdivision algorithm on the structured mesh is

not radially symmetric. This fact could cause some problem during heterogeneous material

modeling, if the mesh and the diagonals are not carefully chosen.

In fact, there is a simple solution to avoid the major diagonals by averaging the basis

function of each direction. InZm with the octet-truss structure, there are 3 choices in the

directions of the major diagonals,i.e.(1, 1, 0), (−1, 1, 0), and(0, 0, 1). Suppose we describe

our objectSΞ associated the particular major diagonal direction defined by theΞ as:

SΞ(x) =
∑
i∈Zm

piMΞ(x− i), (4.36)
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wherepi are initial control points. Let us denote the relevant directional matrices asΞ1, Ξ2,

andΞ3, respectively. Then, we can define the new objectS without any major diagonals:

S(x) =
1

3

3∑
j=1

SΞj
(x). (4.37)

It is easy to find the corresponding subdivision rules. One can simply alternate the major

diagonals in the regular rules (Figure4.8), sum the weights up at each vertex and divide it

by 3. The computed values are shown in Figure4.25. We call the scheme theaveraged solid

subdivision scheme. Note that the face-to-face case becomes irregular with these averaged

masks and the argument in Section4.6.2becomes invalid. The extraordinary analysis of

this particular scheme requires a new mathematical tool, which has not been exploited yet.

(b)(a) (c)

: 9 / 16
: 1 / 32
: 1 / 96

: 7 / 24
: 1 / 12
: 1 / 48

: 1 / 6

Figure 4.25:The regular rules for the averaged subdivision scheme.

4.8 Implementation

The implementation of the subdivision algorithm is straightforward, except the main-

tenance of the major diagonals. As outlined in Algorithm4.1, the subdivision object is

represented by the vertices, edges and cells. The edges provide the connectivity informa-

tion between the vertices. The major diagonal information is stored with each cell. For

tetrahedral cells, the major diagonal is represented by a pair of non-adjacent edges. For
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octahedral cells, the major diagonal is represented by a pair of non-adjacent vertices. Since

there are only 3 choices for both cases, only 2 bits of additional memory is required for

each cell. For each vertex and edge, we compute new vertex and edge point by the sub-

division rules, using their neighbors. Then, we split each cell into subcells using the new

vertices. During the split, if the cell is octahedral, we need to compute the cell point. Each

subcell inherits the information on the major diagonal from its parent cell.

1: OCTET-SUBDIVISION ({vi}, {ej}, {ck})
{Input{vi}, {ej}, {ck}: A set of vertices, edges, and cells, respectively}

2: if this is the first subdivisionthen
3: call MAJOR-DIAGONAL -CHOOSE({ck})
4: end if
5: for all vertexvi do
6: compute a new vertex pointpi

7: end for
8: for all edgeej do
9: compute a new edge pointqj

10: end for
11: for all cell ck do
12: if ck is tetrahedralthen
13: split ck into 5 subcellsc0

k, ..., c4
k

14: else ifck is octahedralthen
15: compute a new cell pointrk

16: split ck into 14 subcellsc0
k, ..., c13

k

17: end if
18: inherit the major diagonal choice fromck

19: construct new edges{e′l} from {pi} ∪ {qj} ∪ {rk}
20: end for
21: return{pi} ∪ {qj} ∪ {rk}, {e′l}, {cm

k}

Algorithm 4.1: OCTET-SUBDIVISION.

If the subdivision is performed for the first time with an arbitrary tetrahedral mesh,

there is no given major diagonal information. In this case, we use a function MAJOR-

DIAGONAL -CHOOSE(Algorithm 4.2) to choose the major diagonal for each cell properly.

The algorithm is based on the breath-first search of the adjacency tree of the cells. During
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the search, it tries to minimize the conflict of the major diagonal choice between adjacent

cells, so that the choice is as proper as possible globally.

1: MAJOR-DIAGONAL -CHOOSE({ci})
{Input{ci}: A set of tetrahedral cells

ci.visited; true if the cell is visited during the search.
ci.edges; A set of edges of the cell.
ci.major-diag; A major diagonal of the cell
(ci.major-diag⊂ ci.edges, |ci.major-diag| = 2). }

2: initialize a queueq and a sets
3: q.push(c0)
4: while q 6= ∅ do
5: c← q.pop()
6: s← ∅
7: for each adjacent cellc′ of c do
8: if c′.visited is true then
9: s← s ∪ c′.major-diag

10: else
11: q.push(c′)
12: end if
13: end for
14: if |c.edges−s| > 1 then
15: choosec.major-diagfrom c.edges−s
16: else
17: choosec.major-diagarbitrary
18: end if
19: c.visited← true
20: end while
21: return

Algorithm 4.2: MAJOR-DIAGONAL -CHOOSE.

4.9 Experimental Results

A major benefit of our solid subdivision scheme is the ability to represent complex

solid models with heterogeneous materials. Figure4.27shows a selection of subdivision

models designed by a simple modeling tool that we developed for the subdivision scheme.

Models with complex topology can be easily represented with the unified scheme. Not
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Cell Subdivision (for each cell)

Control Point Computation
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the first subdivision

level?
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Subdivide into 4
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Figure 4.26:The flow chart of our subdivision scheme implementation.

only the boundaries, but also the internal structures are smooth and well-defined. Figure

4.27(f) illustrates a model with non-trivial topology, which cannot be represented by surface

subdivision schemes without serious modification. Our algorithm can handle it with no

exceptional rule, since we make no special assumption on the connectivity of 3D meshes.

Figure4.28shows a torus model with hybrid dimensionality. It consists of solid and

surface parts. With some additional rules, our scheme can be used for non-manifold object

representations. Extensive research on non-manifold representation using the solid subdi-

vision scheme is discussed in [20].

Figure4.29 and Figure4.30 present volumetric models with heterogeneous material

properties associated with geometry. In Figure4.29, the cylinder model has different ma-

terial densities at the top and the bottom of the object. By utilizing our algorithm, we

can blend the different densities smoothly. As Figure4.29(c) shows, the result is much
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smoother than simple linear interpolation. In Figure4.30, we assign tensions at each vertex

on the coarsest level using simple Laplace’s equation with initial condition. Each time step,

instead of solving the equation on the fine levels, we simply apply our subdivision rules to

interpolate the values using the coarsest level as initial values. The results are shown in Fig-

ure4.30(b) and (c). Even though the potential has not been fully investigated, we believe

that our subdivision scheme can serve as better blending functions or prolongation opera-

tors for finite element analysis or multigrid method based on tetrahedral meshes, instead of

trivariate linear interpolation.
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(a) (b) (c)

(d) (e) (f)

Figure 4.27: Solid subdivision models with non-trivial topology. (a-c) Initial control
meshes. (d-f) The models at subdivision level 3 and their cross-sections.

(a) (b) (c)

Figure 4.28:A torus model that consists of a solid and a surface. (a) Initial control mesh.
The cut shows the internal structure. Purple areas are the backside of a surface. (b) A
cross-section of the model at subdivision level 3. (c) Another cross-section of the model at
subdivision level 3.
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Figure 4.29:A cylindrical model with heterogeneous material. (a) Initial control mesh
and assigned material density (color-coded). (b) A cross-section of the model at subdi-
vision level 3 and its density distribution. (c) Comparison of density distribution by our
subdivision algorithm (bold line) and tri-linear interpolation (thin line).
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Figure 4.30: A panel model with simulated tension force. (a) Initial control mesh and
assigned tension (color-coded). (b) A cross-section of the model at subdivision level 3
and its tension interpolation. (c) Comparison of tension interpolation by our subdivision
algorithm (bold line) and tri-linear interpolation (thin line).
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Chapter 5

Interpolatory Solid Subdivision Scheme
over Simplicial Complexes

Interpolatory subdivision schemes have very desirable properties that approximate

schemes cannot satisfy. In this chapter, we propose a novel interpolatory solid subdivision

scheme defined over arbitrary tetrahedral meshes. We derive the rules using a weighted

perturbation and prove its smoothness using the generating function method for regular

cases.

The interpolatory solid subdivision scheme over simplicial complexes was introduced

in a paper presented in the 2003 International Conference on Shape Modeling and Appli-

cations [17]. A paper with the detailed analysis is in preparation.

5.1 Introduction and Motivation

Interpolatory subdivision schemes interpolate initial control point sets. In each step,

once new vertices are introduced, their geometric positions and associated properties are

invariant. Because of this, an interpolatory scheme has unique advantages over an approx-

imate scheme, such as:

• It is easy to enforce constraints during physics simulation.

• It supports intuitive, direct manipulation of control points.
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• It has no need for an auxiliary subdivision matrix for vertex points.

• It has no need for subdivision matrix inversion during data fitting applications.

Therefore it would be more suitable for practical applications such as physics simulation,

finite element method (FEM), interactive design and data fitting. Our motivation is to de-

velop a solid subdivision scheme that can interpolate control points scattered in 3D space.

However, due to the complexity and ambiguity associated with interpolatory schemes, al-

most no attempt has been made to develop an interpolatory solid subdivision scheme.

We propose a novel interpolatory solid subdivision scheme, specifically over arbitrary

tetrahedral meshes. Based on the 3D analogue of the Butterfly scheme [36], we derive the

subdivision rules using a weighted perturbation of linear interpolation. Using mathematical

technique developed by Dynet al.[35, 36, 38, 32, 37, 33], we prove theC1 smoothness of

our scheme in regular cases. Like the box-spline based solid scheme, we utilize the octet-

truss as the regular structure, and expand our rules to cover arbitrary cases.

5.2 Derivation of Solid Subdivision Scheme

We employ the generating functions of subdivision process to derive the interpolatory

scheme, which are already discussed in Chapter4. Also, since our goal is to provide the

subdivision scheme over simplicial complexes, we assume the same octet-truss structured

meshes as our regular meshes.

We consider the subdivision process as a linear interpolation with weighted perturba-

tion. The simplest form of interpolatory schemes is a linear interpolation. For any vertexx

and edgee = [x0,x1], the interpolation can be simply described as:

xnew = x, (5.1)

enew =
1

2
(x0 + x1). (5.2)
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Now, for the new edge point, we introduce perturbation using information from its neigh-

bors:

enew =
1

2
(x0 + x1) + f(w,q) + g(w, r). (5.3)

Heref andg are perturbation function with weightw, q = [q0, ...,qN−1] are one-neighbor

vertices,i.e.eachqi ∈ ρ(e), andr = [r0, ..., rM−1] are two-neighbor vertices,i.e.each

rj ∈ ρ2(e). We defineρ2(·) by:

Definition 5.1. For an edgee, two-neighborρ2(e) is defined by

ρ2(e) = {p | p ∈ ρ(e) or p ∈ ρ(p′) for some p′ ∈ ρ(e)}. (5.4)

We choose a linear functionf andg for our scheme. The convergence and the continuity

of the scheme depend on the choice of the weightw, which will be decided in the next

section.

5.2.0.1 Vertex Rule

Since our scheme is interpolatory, it is obvious that a vertex point is geometrically

invariant in each level. Therefore, ifx is a vertex in the current level, a vertex pointxnew is

simply assigned by

xnew = x. (5.5)

5.2.0.2 Edge Rules

For each edgee = [x0,x1], a new edge pointenew can be written as three parts of linear

combinations, or as a weighted average of both edge end points, one, and two-neighbors.

In the regular case (Figure5.2(a) and Figure5.3(a)), the number of one- and two-neighbors

are both 6. Therefore, we can express

enew =
1

2
(x0 + x1) + w

5∑
i=0

qi − w

5∑
j=0

rj, (5.6)

whereqi andri are one and two-neighbors, respectively.
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In a more general case (Figure5.1), we average them by the number of their neighbors,

i.e.,

enew =
1

2
(x0 + x1) +

M

N
w

N−1∑
i=0

qi − w

M−1∑
j=0

rj, (5.7)

whereN andM are the numbers of one-neighbors and two-neighbors, respectively. It

should be noted that Equation (5.7) only ensures convergence around irregular vertices.

There is a slight, however noticeable, degeneracy when a vertex has valence of 4, which

rarely occurs in a real-world model.

(a) (b)

Figure 5.1:Edge neighbors in general cases. (a) Green vertices denote one-neighbors. The
edge is colored in red. (b) Blue vertices denote two-neighbors. They consist of the vertices
from adjacent cells of one-neighbor cells.

5.2.0.3 Cell Rules

A cell point occurs during a split of an octahedron. Since we maintain the major diago-

nalm = [x0,x1], the rule can be considered as an edge rule applied on the major diagonal

shown in Figure5.2(b). In this situation, we can express a new cell pointcnew as:

cnew =
1

2
(x0 + x1) + w

5∑
i=0

qi − w
5∑

j=0

rj. (5.8)

Because of the size of the edge mask, it is relatively difficult to apply it directly on the

mesh, especially when an extraordinary case occurs. We devise a modified mask (Figure

5.3(b)) which is easier to apply in general. Then the new cell point rule for the regular case
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becomes:

cnew =
1

2
(x0 + x1) + 2w

3∑
i=0

qi − w

7∑
j=0

rj, (5.9)

whereqi is a vertex from the octahedron except the major diagonal vertices andri is a

vertex from the tetrahedra around the tetrahedron.

The choice of the weightw is subject to the convergence and smoothness analysis of

the scheme on the regular meshes. We have proved that the scheme is convergent when

w < 1
8

and it isC1 smooth whenw < 1
16

. It is discussed in the next section.

q1 (q2)q5 (q4)

x0

q3x1

r2 (r1)

q0 r0

r3

r4 (r5)

(b)(a)

r5

x0

x1

q3 (q0)

q1

q2

r0 r2

r1 q4

q5

r4

r3

Figure 5.2:(a) The top-view of the one-neighbor (green) and two-neighbor (blue) of the
regular edge case (red) (b) The top-view of the one-neighbor (green) and two-neighbor
(blue) of the cell case (the major diagonal in red).

(a) (b)

Figure 5.3:(a) The one-neighbor (green) and two-neighbor (blue) of the regular edge case
(red). (b) The one-neighbor (green) and two-neighbor (blue) of the cell case (the major
diagonal in red).
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5.3 Analysis of Subdivision Scheme

5.3.1 Regular Cases

The subdivision scheme can be expressed in matrix form aspk+1 = Spk, wherepk is

the vector of points at subdivision levelk, S is the local invariant subdivision mask, and

pk+1 is the resulting vector of new points. It is relatively straightforward to confirm that

the scheme is convergent by spectral analysis of the subdivision matrixS. In particular, the

subdominant eigenvalue ofS is strictly less than 1 forw < 1
8

which is sufficient to show

the convergence of our interpolatory scheme.

We will use techniques explained by Dynet al. [38] to prove that our subdivision

scheme isC1 continuous over the octet-truss structured meshes. Since our subdivision

scheme has no closed-form expression for its basis functions, we cannot simply extract the

basis functions and examine them analytically. Therefore, we rely on analysis of subdivi-

sion matrices and characteristic functions to study the scheme’s convergence and continuity

properties. By showing that the characteristic polynomials of the subdivision process have

certain properties, we will demonstrate that the algorithm generates volumes that areC1 in

the limit.

Generally, any binary stationary subdivision scheme for solids can be written as

Pk+1(z) = a(z)Pk(z
2), z ∈ R3, (5.10)

wherePk(z) =
∑

µ∈Z3 pk
µz

µ is a formal generating function associated with the control

pointspk = {pk
µ}µ∈Z3 at the levelk, anda(z) is the characteristic polynomial derived from

the local subdivision matrixS:

a(z) =
∑
µ∈Z3

aµz
µ. (5.11)

By comparing these coefficients aftern iterations of the subdivision process, one can



5. INTERPOLATORY SOLID SUBDIVISION SCHEME 94

show (see [33]) that

||Sn||∞ = max
γ

∑
ν∈Z3

a
[n]
2nν+γ, (5.12)

whereγ ∈ {0, 1, . . . , 2n − 1}3 anda[n](z) =
∏n−1

j=0 a(z2j
) =

∑
µ a

[n]
µ zµ. This relation will

be used to calculate the norm of the subdivision matrix. We utilize the coefficients of the

characteristicpolynomial(or Laurent polynomial, to be correct) instead of the matrix itself

to compute the norm. The rest of the proof will follow the steps below:

(a) Find the characteristic polynomial of the scheme.

(b) Derive thedifference processesof the scheme along the directions that are associated

with the characteristic polynomial of the scheme.

(c) Prove that the difference processes are continuous by using their characteristic polyno-

mials, and thereby show that the scheme isC1.

Steps 2 and 3 are special cases of the following two theorems. Readers who are inter-

ested in the proofs of the theorems are referred to the work by Dynet al. [38].

Theorem 5.1.Let the characteristic polynomial ofS have the form

a(z) = q(z)
s∏

i=1

(zθ(i)

+ 1), (5.13)

where q is a Laurent polynomial andθ(i) ∈ Zs satisfies

|det(θ(1), . . . , θ(s))| = 1. (5.14)

Let Di be the subdivision matrix corresponding to the polynomiala(z)(zθ(i)
+ 1)−1. Then

the subdivision scheme associated withS is uniformly convergent if and only if for some
L ∈ Z+,

||DL||∞ = max
1≤i≤s

||DL
i ||∞ < 1. (5.15)

Theorem 5.2.LetS be convergent with a characteristic polynomial

a(z) = (zθ + 1)ν2−νq(z), (5.16)
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whereθ ∈ Zs, ν ∈ Z+, andq is a Laurent polynomial. If the subdivision scheme associated
with q converges uniformly, then for all initial control pointsp0,

∂ν
θ S

∞p0 ∈ C(Rs), (5.17)

where∂θ means the directional derivative in the directionθ, i.e.,

∂θf(x) = lim
t→0

(f(x + tθ)− f(x)) . (5.18)

Theorems5.1and5.2provide us the sufficient conditions to guarantee theC1 continuity

of the subdivision scheme. The conditions for the norm of the matrix will be confirmed by

means of the relation explained in Equation5.12. During most of the process, we will rely

on numerical experiments to verify the satisfaction of the conditions.

The characteristic polynomial of our new scheme has the form of

a(z) =
∑
µ∈Z3

aµz
µ. (5.19)

To obtain the coefficients, we successively apply our subdivision masks over the

octet-truss structured regular grid onZ3. We perform the same process over

each edgep2kp2k+1, k = 0, · · · , 6 ,where p0(−1, 0, 0), p1(1, 0, 0), p2(0,−1, 0),

p3(0, 1, 0), p4(0, 0,−1), p5(0, 0, 1), p6(−1,−1,−1), p7(1, 1, 1), p8(−1, 0,−1), p9(1, 0, 1),

p10(0,−1,−1), p11(0, 1, 1), p12(−1,−1, 0), andp13(1, 1, 0). The coefficient is explicitly

formulated as

aµ = 1, µ = (0, 0, 0)

aµ = 1
2
, µ = (±1, 0, 0)

= (1, 1, 1), (−1,−1,−1)

= (1, 1, 0), (−1,−1, 0)
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aµ = w, µ = (2, 1, 2), (−2,−1,−2)

= (2, 1, 1), (−2,−1,−1)

= (2, 1, 0), (−2,−1, 0)

= (2, 1,−1), (−2,−1, 1)

= (1, 1,−1), (−1,−1, 1)

= (1,−1, 0)

aµ =−w, µ = (3, 2, 1), (−3,−2,−1)

= (3, 1, 1), (−3,−1,−1)

= (3, 1, 0), (−3,−1, 0)

= (2, 3, 2), (−2,−3,−2)

= (2,−1, 0), (−2, 1, 0)

= (2,−1,−1), (−2, 1, 1)

Finally, we have

aµ′ = aµ, if µ′ = σ(µ), σ ∈ S3,

whereS3 denotes the set of all permutations over{1, 2, 3}, which is followed by the sym-

metry of the subdivision mask in the regular case. The function can be factored using

(1 + z1)(1 + z2)(1 + z3)(1 + z1z2z3). Therefore, it can be written as

a(z) =
1

2
(z1z2z3)

−1p(z)
4∏

i=1

(1 + zθ(i)

) (5.20)

{θ(i)} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}, (5.21)

wherep(z) is a Laurent polynomial with respect toz1, z2, andz3 which is of the form

p(z) = 1− wq(z1, z2, z3). If w = 0, Equation (5.20) becomes the generating function of a

linear interpolation.

To prove that the scheme isC1, it is sufficient to show that||DL
(i1,i2)|| < 1 and||D′L

i1
|| <
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1, i1 6= i2 for someL where

D(i1,i2)(z) = 2(1 + zi1)
−1(1 + zi2)

−1 a(z)

D′
i1(z) = 2(1 + zi1)

−1(1 + z1z2z3)
−1 a(z).

Becausea(z) is invariant for a permutation on indices, it is equivalent to show

||DL
(1,2)|| < 1 and||D′L

1 || < 1 where

D(1,2)(z) = 2(1 + z1)
−1(1 + z2)

−1 a(z)

D′
1(z) = 2(1 + z1)

−1(1 + z1z2z3)
−1 a(z),

respectively.

It has been proven numerically that||DL
(1,2)|| < 1 and||D′L

1 || < 1 for w = 1
16

, especially

whenL > 5. In more general cases, the conditions are satisfied for someL, if w > 0 is

small enough.

5.3.2 Tension Control

By controlling the weightw, we have different effects on the geometry of our models.

In the case ofw = 0 (see Figure5.4(a)), the subdivision simply performs a linear inter-

polation. By increasingw, we expect to receive many ripples in a model. Eventually, the

subdivision diverges ifw exceeds a certain threshold (see Figure5.4(f))

5.3.3 Extraordinary Cases

Unlike surface subdivision schemes whose irregular analysis involves only extraordi-

nary vertices, we must take care of both extraordinary vertices and edges in solid schemes

[4]. Unfortunately, existing spectral analysis using Discrete Fourier Transform (DFT)

[31, 105] cannot be directly adopted for solid schemes, as the technique is based on spec-

tral behavior over a 2-dimensional domain. However, we can still employ eigenvalue and
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(a) (b) (c)

(d) (e) (f)

Figure 5.4:Tension control. (a) The original control points. (b-f) show the model at level
4 with w = 0, w = 1

32
, w = 1

16
, w = 1

8
, andw = 1

4
, respectively.

characteristic map analysis [84] numerically, at least for restricted cases, which are well-

understood techniques for surface subdivision analysis.

For instance, the local invariant subdivision matricesS of the scheme around extraor-

dinary vertices and edges satisfy an eigenvalue property of

λ0 = 1 	 λ1 ≥ λ2 ≥ λ3 	 λ4, . . . , λn, (5.22)

whereλi’s are eigenvalues ofS in decreasing order. It is worth mentioning that we have

triple subdominant eigenvalues which are strictly less than 1. Also, we have numerically

generated characteristic maps from those eigenvalues and associated eigenvectors as their

control nets, and have confirmed that the maps are one-to-one and regular over a large

number of iterations. Some of examples are shown in Figure5.5.

Even though we can confirm the regularity of the characteristic map for each specific

case, it is impossible to prove it symbolically due to the aforementioned reason (i.e., DFT is

not applicable in volumetric settings). In general, extraordinary edge cases are limited and

simple to generate. However, the number of extraordinary vertex cases is exponentially

bounded by the vertex valencen and is associated with the number of triangulation of
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n points (in general position) over a spherical domain [47]. Further research should be

conducted to exploit a more systematic way in order to prove extraordinary cases in solid

subdivision schemes. Such an investigation might result in a new spectral analysis tool for

even higher domains.

(a) (b)

(c) (d)

Figure 5.5:Control nets for rings of characteristic maps for our scheme. (a-b) Control nets
for extraordinary edges with 4 and 6 incident vertices, respectively (cross-sections). (c-d)
Control nets for extraordinary vertices of valence 4 and 6, respectively.
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Chapter 6

Multi-dimensional Non-manifold
Subdivision Framework

In real-world modeling, curves, surfaces, and solid objects are often mixed and repre-

sented in a single workplace. In this chapter, we propose a novel method that can represent

multi-dimensional non-manifold subdivision objects in a single framework. The framework

also supports the boundary and the sharp feature representations.

The Multi-dimensional Non-manifold Subdivision Framework was introduced in a pa-

per presented in the 9th ACM Symposium on Solid Modeling and Applications 2004 [20].

The extended paper is submitted to Graphical Model for review [18].

6.1 Introduction and Motivation

Many industrial design projects include a wide range of shape representations in a sin-

gle place. For instance, in car design, a hood of a car can be represented as thin plate,

while volume representation is more appropriate for the engine parts. Such situation leads

to complicated non-manifold objects, where curves and surfaces meet together, or multiple

surfaces are coincide in one edge. In addition, the boundary and the feature representa-

tions are essential in mechanical design. Without modification, subdivision schemes tend

to smooth objects, since the subdivision process is weighted averaging in essence. In this
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chapter, we establish a framework that is based on flexible parametric domains and power-

ful subdivision rules which can be applied to objects with complicated dimensionality. The

goals of our new approach are as follows:

• Define a parametric domain that provides high flexibility in modeling and simplicity

in topological inquiry.

• Represent objects with multiple dimensions in a single framework.

• Develop unified subdivision rules for arbitrary manifolds and multiple dimensions.

• General or user-specified treatments for non-manifold regions.

• Support the boundary and the sharp feature representation

• Level-of-detail (LODs) control.

6.2 Simplicial Complex Domain

In the next few sections, we introduce several definitions related to the simplicial com-

plex that are to be utilized for various topological inquiries during the subdivision process.

6.2.1 Set Definitions

Our domain of choice is a simplicial complex inRn. A k-simplexS can be defined as

a set inRn,

S = {x ∈ Rn|x =
k∑

i=1

ci(xi − x0)}, (6.1)

where

ci ≥ 1,
k∑

i=1

ci = 1, xi ∈ Rn. (6.2)

SinceS can be uniquely determined byk + 1 pointsx0, x1, ... ,xk, and is independent

of their ordering, we simply use a set notationS := {x0,x1, ...,xk}. In this paper, we
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x0 x1

x0

x1 x2

x0

x1 x2

x3

(a) (b) (c)

Figure 6.1:Examples of simplices. (a) A 1-simplex, (b) a 2-simplex, and (c) a 3-simplex.

limit k to be less than or equal to three. Note that any subset ofS also forms a simplex.

Geometrically, each subset can be considered as a face, an edge, or a vertex. We callk the

dimensionof the simplexS, or dim(S).

A simplicial complex, or a complex,C is a collection of simplices where: (1) the subsets

of each simplex inC is in C; (2) the intersection of any two simplices ofC is a subsimplex

of both. The second property prevents the introduction of T-junctions or the improper

incursion among simplices. Also, a nonempty subsetD of a simplicial complexC is called

a simplicial subcomplexif it also satisfies the properties. We simply call it asubcomplex.

The dimension of a complex is defined by the highest dimension of simplices in it.

In the complexC, we call a simplex asubsimplexif it is a subset of other members of

the complex. Likewise, it is called aproper subsimplexif it is a proper subset of a simplex.

In addition, a simplex is called amaximalsimplex if it is not a subsimplex of any other

simplices inC.

In summary, the domain space of our framework can be expressed as the pair of the

following sets:

• Set of vertices

V = {xi | xi ∈ R3}, (6.3)
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(a) (b) (c)original

Figure 6.2: The subsimplices of a 3-simplex. (a) The 2-subsimplices, (b) the 1-
subsimplices, and (c) the 0-subsimplices.

• A simplicial complex:

C = {S ⊂ V | S 6= ∅, |S| ≤ n + 1}, (6.4)

with the following property:

If S ∈ C, then T ∈ C for all T ⊂ S, T 6= ∅. (6.5)

6.2.2 Complex Decomposition

A complexC can contain simplices of different dimensions. Since eachk-simplex is to

be used as a part of the initial control points of ak-manifold, we need to decomposeC with

respect to the dimensions of the simplices. We defineCk as the largest subcomplex ofC,

whose maximal simplices always have the dimensionk. In other words,Ck comprises of

all maximalk-simplices and their subsimplices inC. We call it ak-subcomplex. Therefore,

we can expressC as:

• k-subcomplex decomposition

C =
⋃

k=1,··· ,m

Ck, (6.6)

where eachCk satisfies the following property:

If S ∈ Ck and is maximal in Ck, then dim(S) = k. (6.7)
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C C3 C2 C1

Figure 6.3: Complex decomposition. A complexC can be decomposed intoCk’s with
k = 1, 2, 3.

Later on, we definek-manifolds (with boundary) over thek-subcomplex using appropriate

subdivision rules. However,Ck’s are not mutually exclusive. This fact leads us to the need

for special rules across the intersections of thek-subcomplexes. In fact, the intersections

represent non-manifold regions in the result. Moreover, some non-manifold regions could

appear withinC1 andC2, since the complex is defined overR3.

6.2.3 Boundary Simplex

A face of ak-simplexS is simply defined as a(k− 1)-subsimplex ofS. A boundary of

a complex can be defined as follows:

• Boundary simplex: If(k − 1)-simplexS ∈ C is a face of a maximalk-simplex, and

is not a subsimplex of any other simplices, thanS defines a boundary. We call it a

k-boundary simplex.

It is clear that boundary simplices and their subsimplices form a subcomplex ofC. It is

denoted by∂C.

6.2.4 Non-manifold Simplex

If our domain consists of a singlek-simplex, it is trivial to establish a manifold map

from the simplex to ak-manifold. However, it is not always possible to define a manifold
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(a) (b) (c)

Figure 6.4: Examples of complexes containing non-manifold simplices. (a) Type 1, (b)
type 2, and (c) type 3. The vertices or edges in gray are the non-manifold simplices.

map over a complex. For instance, if the domain consists of an 2-simplex and a 3-simplex

joined by an edge, it is not possible to define either 1- or 2-dimensional Euclidean map

across the edge. Also, if three or more 2-splices share a single edge in general position,

we cannot find any single Euclidean map that can be well-defined across the edge. These

cases occur only on the intersections of the simplices that comprise the domain. We call a

simplexnon-manifoldsimplex, if we cannot define an Euclidean map on the simplex. The

following definition covers all the possibilities of non-manifold simplices:

• Non-manifold simplex: Ak-simplexS ∈ C is a non-manifold simplex, if it satisfies

any of the following properties.

1. S ∈ Ck ∩ Cl wherek 6= l.

2. S ∈ Ck exclusively,dim(S) = k − 1 andS = S1 ∩ S2 ∩ S3 for some distinct

k-simplicesS1, S2, S3 ∈ Ck.

3. S ∈ Ck exclusively,dim(S) < k−1, S = S1∩S2 for some maximalk-simplices

S1, S2 ∈ Ck, S1 6= S2 andS is not a proper subsimplex of any non-manifold

simplex.

4. S ∈ Ck exclusively,dim(S) < k − 1 andS is a subsimplex of a non-manifold

simplex
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These four properties are mutually distinct. We call the first three cases a type 1, a type 2

and a type 3 non-manifold simplex, respectively. We employ various strategies to tackle the

non-manifold cases. Generally, non-manifold simplices create ill-posed problems. There

could be several different solutions to meet a particular requirement in certain applications.

We rely on a user-specific preference to resolve the problems. If no rule is specified by

the user, we use the subdivision rules for 3-manifolds to spatially blend the manifolds of

different dimensions. The forth case can be dealt with the same solutions for the other three

cases.

6.3 Unified Subdivision Scheme

In the previous section, we defined the domain of the framework as a simplicial com-

plex. Our object can be represented by the sum of smooth basis functions that are defined

locally over the simplices in the complex:

f(x) =
∑

pN(x), (6.8)

wherep ∈ S ∈ C with dim(S) = 1. Therefore, the 1-simplices (or vertices) in the complex

act as the control points of the shape.N(x) is a basis function with local support defined

over the complex. Basis functions form a partition of unity onC. We choose the box

spline as the functionN(x) whose support lies in the 1-ring of simplices. For multivariate

cases, we donotuse the tensor-product generalization of splines in strong contrast to many

other subdivision schemes, since our domain is based on a complex. Instead, we introduce

multivariate box splines with simplex support. One example is Loop’s scheme [58] for

surfaces. For 3-D, we use the box spline solid that has been employed in our previous work

[16]. Non tensor-product box splines are particulary useful in the subdivision process,

since: (1) Their subdivision rules are obtained intuitively from their definitions; (2) They
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can achieve comparable smoothness with relatively low polynomial degree; (3) The choice

of domain is more flexible.

6.3.1 Regular Subdivision Rules

Even though it is possible to figure out the subdivision rules using the definitions of

the box splines, it is more convenient to use the generating functions of the box splines

and their recursive relations. It is known that the coefficients of the generating functions

can provide us the coefficients for the subdivision rules, as proven in [97]. In general, the

generating functionSD(z) for the box splineND(x) can be expressed as:

SD(z) =
1

2d−k

d∏
i=1

(1 + zδi), (6.9)

whered = |D|. Note that the power ofz follows the multi-index notation. For eachk, the

generating functions of the double(k + 1)-directional box splines are:

• k = 1:

SD(z) =
1

8
(1 + z)4. (6.10)

• k = 2:

SD(z1, z2) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2. (6.11)

• k = 3:

SD(z1, z2, z3) =
1

32
(1 + z1)

2(1 + z2)
2(1 + z3)

2(1 + z1z2z3)
2. (6.12)

We can find the subdivision rules for the regular simplicial meshes by assigning the

coefficients of thezδi ’s to the vertex with the coordinatesδi. We can summarize the rules

as follows:

• Regulark-simplex subdivision rules:
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Figure 6.5:Regular subdivision rules. (a) The 1-simplex rules. (b) The 2-simplex rules.

Vertex points (for each vertexxi):

vnew =
1

2k+2

{
(2k+1 + 2)xi +

∑
xj∈ρ(xi)

xj

}
. (6.13)

Edge points (for each edgeei = [xi,xi+1]):

enew =
1

2k+1

{
(2k−1 + 1)(xi + xi+1) +

∑
xj∈ρ(ei)

xj

}
. (6.14)

Cell points (for each octahedral cell[xi, ...,xi+3,xj,xj+1], with the diagonal

[xj,xj+1]):

cnew =
1

8

{
(xi + · · ·+ xi+3) + 2(xj + xj+1)

}
. (6.15)

Here, we use more conventional names for 0-, 1-, 2-, and 3-simplices, namely, vertices,

edges, and cells, respectively.ρ(·) denotes the 1-ring of neighboring vertices of a vertex or

an edge. In the regular k-simplicial meshes,|ρ(x)| = 2k+1 − 2, and|ρ(e)| = 2k − 2 for

each vertexx or edgee. Note that eachk-manifold generated by the subdivision rules on

the regular mesh satisfiesCk smoothness as mentioned above.

6.3.2 Extraordinary Subdivision Rules

In practice, a complexC could contain a vertex or an edge, that does not have a regular

number of neighbors|ρ(·)| (or valencesfor vertices). We call them theextraordinarycases.

They require modified rules to accommodate the lack (or the excessiveness) of neighbors.
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Figure 6.6:Regular 3-simplex subdivision rules. (a) Vertex point, (b) edge point, and (c)
cell point rules.

Fortunately, the extraordinary cases are isolated over the subdivision processes. Also, some

of the regular rules do not require any extraordinary rule. For instance, the 1-simplex

rules do not have any extraordinary case. For the 2-simplex rules, there could be only

extraordinary vertices. Likewise, no extraordinary cell point rule is required for the 3-

simplex rules.

The extraordinary vertex rule for a 2-simplex has been well studied and there is a con-

siderable amount of literature suggesting the coefficients for the rule that guarantee at least

C1 smoothness in the limit. For instance, the original Loop scheme [58] suggests the coef-

ficients for a vertex with valencem that are derived from the discrete Fourier analysis and

the eigenvalue analysis of the subdivision matrix. We adopt the values proposed by Warren

et al.[97]:

• Modified 2-simplex subdivision rules:

Vertex points (|ρ(xi)| = m):

vnew = (1−mc)xi + c
∑

xj∈ρ(xi)

xj, (6.16)

wherec = 3
16

for m = 3, c = 3
8m

, otherwise.

Similar modifications are required for the 3-simplex subdivision rules:

• Modified3-simplex subdivision rules:
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Figure 6.7:Modifiedk-simplex subdivision rules.

(a) (b) (c)

Figure 6.8:Examples of manifolds with boundary. (a) A 1-manifold with boundary. (b) A
2-manifold with boundary. (c) A 3-manifold with boundary.

Vertex points (|ρ(xi)| = m):

vnew =
9

16
xi +

7

16m

∑
xj∈ρ(xi)

xj. (6.17)

Edge points (|ρ(ei)| = m):

enew =
5

16
(xi + xi+1) +

3

8m

∑
xj∈ρ(ei)

xj. (6.18)

6.3.3 Boundary and Non-manifold Rules

The boundaries ofk-manifolds cannot be represented by thek-simplex subdivision

rules, because they are defined by the faces ofk-simplices. Instead, we use the(k − 1)-

simplex subdivision rules to represent the boundaries. Since all of the subdivision rules rely
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(a) (b) (c)

Figure 6.9:The 1-ring neighbors with the relieved topology condition. (a) and (b) show
examples of the vertex 1-ring for type 3 non-manifold vertices. (c) shows an example of
the edge 1-ring neighbors.

(a) (b) (c)

Figure 6.10:Examples of non-manifold cases. (a) A type 1 case by the 2- and 3-manifold
intersection. The rule N-1 with 1-simplex rules is applied. (b) A type 2 case by a single
1-manifold. (c) The cross-section of the type 2 case.

only on the 1-rings of neighbors, this approach causes no additional trouble between the

boundary and the interior simplices. It is, in fact, a standard approach for most subdivision

surface schemes. Figure6.8demonstrates examples of such boundary cases.

Non-manifold regions require a special rules. We categorize the cases into three types,

as explained in Section6.2.3. In each case, we rely on user input to determine which

rules to apply. If the user has not provided a choice, we try to find the best possible way

to deal with it. Yinget al.[102] proposed detailed approaches to overcome non-manifold

topology with subdivision surfaces. They involve a the specially modified Loop’s scheme

and a geometric fitting process. Since our domain is inR3 and we have the 3-simplex
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subdivision rules that can accept an arbitrary manifold with lower dimension, our solution

is much simpler, as described below. For each case, we can apply either specific rules (N-1

and N-2) or general rules (G-1 and G-2):

• The following three rules are specific for type 1 and type 2 cases.

Rule N-1 Type 1 is a region where the manifolds with different dimensions meet.

In this case, we can follow the subdivision rules for singlek-simplex of our

choice.

Rule N-2 Type 2 is a region where a multiple manifold of a single dimension inter-

sects by their faces. This region can be considered as a self-intersection. Our

suggested solution is to choose one pair of the simplices on which we apply the

subdivision rule.

• Type 3 is a region where multiple manifolds of a single dimension intersect, but they

do not share the faces. In this case, we found that the general rules described below

yield the best results.

• Regardless of the type, we can apply one of the general rules as follows:

Rule G-1 Treat the intersection as a 0-, or 1-singularity.

Rule G-2 Use the3-simplex subdivision rules with the relieved topology condition.

By a subdivision rule with therelieved topology condition, we mean that the rule only

considers the connectivity between each vertex when acquiring the 1-ring of neighbors,

regardless of the existence of a simplex in between. Figure6.9 shows examples of neigh-

bor choices by the relived topology condition. Since the intersection between simplices

with different dimensions always occurs on the boundary complex∂C, we only choose

the neighbors in∂C. Figure6.10and6.11 illustrate examples of non-manifold cases. In
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(a) (b) (c)

Figure 6.11:Type 3 non-manifold rules. (a) The initial complex. (b) The subdivision by
the rule G-1. (c) The subdivision by the rule G-2. The red vertex preserves its position in
(b), while it is blended in (c).

Figure6.10(a), a 2-manifold (the purple area) intersects with a 3-manifold (the blue area).

Therefore, it forms a type 1 case. For this particular case, a user has decided to follow the

rule N-1 with 2-simplex subdivision rule. Thus, the intersected area follows the 2-simplex

boundary rule, and the 3-manifold is attached onto it. Figure6.10(b) and (c) show typical

type 2 cases. In Figure6.10(b), the 1-manifold intersects itself at a point (the red vertex).

A multiple number of surfaces intersects at an edge in Figure6.10(c). For both cases, we

use the rule G-2 to blend non-manifold parts into the bodies. Figure6.11shows the effects

of the different rules. In Figure6.11(b), the user selects the red vertex to be a singularity

(the rule G-1). Hence, we only apply the 0-mask (i.e., the1× 1 identity matrix) on the ver-

tex during the subdivision process. Thus, it preserves the position during the subdivision.

However, in Figure6.11(c), we follow the rule G-2. As a result, the vertex has been moved

according to the positions of the 1-ring neighbors because we use the subdivision rules for

3-simplices. In the end, the final shape is much smoother and all the boundaries are well

blended. Figure6.12lists all the solutions provided by our subdivision scheme for a single

configuration. Overall, the rule G-2 provides the most visually pleasing results. We should

mention that the suggested rules do not represent all the possible solutions. Nonetheless,

we can introduce a new rule depending on the requirement of a particular application.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12:Comparison between the non-manifold rules. (a) The initial control points.
The complex consists of one 3-simplex (octahedron) and two 2-simplices (triangles). The
intersection between the 3-simplex and 2-simplices form type 1 cases. (b) The rule N-1
is applied. In this case, we consider the intersection as a part of the boundaries of the 2-
simplices (triangles). (c) The rule N-1 is applied. But, instead of using 2-simplex boundary
rules, we utilize the intersection as a part of the boundary of the 3-simplex. As a result, the
boundary of the 3-simplex region does not change at all. (d) We apply the rule G-1 with
the vertices as 1-singularities. (e) We apply the rule G-1 with the edges as 2-singularities.
The intersection create an 1-singular curve on the surface of the 3-simplex boundary. (f)
Finally, the rule G-2 is applied to the intersection. No information is specified by the user.
Only connectivity and 3-simplex subdivision rule is used. In the end, the intersection is
smoothly blended.
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6.4 Singularity and Adaptivity

Even though the subdivision rules that we have presented so far are ideal for repre-

senting smooth objects, it is desirable to have a model with sharp features, such as cusps,

creases, or corners, especially in real-world applications. Also, we may want to have more

details in some part of the model without subdividing the whole complex. In the follow-

ing sections, we discuss the extensions of the framework that can increase its benefit in

practical solid modeling.

6.4.1 Singularity Representation

Hoppeet al.[46] suggested a modification of Loop’s scheme to represent sharp features

within smooth surfaces. Our basic idea is similar to theirs. However, we generalize the

approach to apply to multi-dimensional models.

A manifold defined by the subdivision rules isC1 smooth over the complexC except in

non-manifold regions. To represent features within the manifold: (1) We need to specify

the area of the domain where the features occur; (2) We need to specify the subdivision

rules to represent the features in the manifold. Among many types of features, we only

consider “sharp” features, where the manifold is continuous, but isnot differentiable. We

call this type of features asingularityfor convenience. We define ak-singularsimplex by:

• k-singular simplex: Ak-simplexS ∈ C is ak-singular simplex, if and only if: (1)

There exists noC1 map tol-manifolds defined over any simplexT ∈ C, whereS ⊂ T

andk < l. (2) It is possible to define a differentiable map on the singular simplex to

k-manifolds.

We consider a subcomplexS ⊂ C, which is a collection of all singular simplices and their

subsimplices inC. Since they are a complex by themselves, all definitions and subdivision

rules that are applied to the complexC are also applicable toS. Basically,S generates
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embedded manifolds within the original manifolds onC. When applying the subdivision

rules, if a vertexx or an edgee belongs to a maximal simplex inS, we only follow the

subdivision rules that match the dimension of the simplex, and ignore any other simplices

that may contain the singular simplex. Figure6.13 illustrates examples of singularities

which our framework can represent. As shown in Figure6.13(a), if a vertex (a 1-simplex)

is assigned to be singular, then the scheme only applies the 0-mask on the vertex during the

subdivision. Therefore, the vertex does not change its position at each subdivision level.

However, other vertices around it follow the normal rules. As a result, we can obtain an

object which is smooth except at one singular vertex and in its local area. This singularity

is particularly useful to generate a cusp on the part of a manifold. In Figure6.13(b), a user

has assigned one vertex and all edges that go through it as singular. The 0-mask is applied

to the vertex, and each edge follows the 1-simplex edge rule. It effectively produces a

corner and three creases starting from it. The case shown in Figure6.13(c) is more subtle.

The user has introduced a 2-manifold singular region in the middle of the 3-manifold. As

a result, the 3-manifold is split into two parts along with the singular surface. Both parts

are smooth inside and outside, but the intersection is only smooth along with the tangent

direction of the singularity. These types of singularities are especially useful if we want to

design or fit objects with heterogeneous material. For instance, we can model a geological

image containing streams and mineral veins (1- and 2-singularities) with ease.

6.4.2 Local Adaptive Refinement

During the process of modeling an object represented by our framework, a situation

can occur, that requires finer simplices than originally given. For instance, we may want

to generate very fine details on a certain region of the manifold that is defined over one

simplex originally. Since the subdivision rules generate aC1 smooth box spline on a single

simplex, it is not possible to achieve high-level of detail without splitting the simplex itself.
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(a) (b) (c)

Figure 6.13:Examples of singularities in manifolds. (a) A singular vertex. (b) A corner
and creases. (c) A 2-manifold embedded in the 3-manifold.

(a) (b) (c) (d) (e)

Figure 6.14:Local refinement rules. (a) Red rule and (b) Green rule for local triangulation.
(c) Red rule, (d) Green-III rule, and (e) Green-I rule for local tetrahedralization.

One obvious solution is a global refinement of the entire complex. This surely would

work, but at the expense of the size of the complex and the memory consumption. If

we simply split a single simplex, the integrity of the complex will be broken, since the

neighboring simplices become non-simplicial by the introduction of cracks, or T-junctions.

We follow typical Red-Green split rules to avoid the situation (See Figure6.14). For the

1-simplex case, no special rule is needed. For the 2-simplex case, only the 1-ring of the

adjacent simplices are affected by Green rule (Figure6.14(b)). For 3-simplices, the 1-ring

of the adjacent simplices are split by Green-III rule (Figure6.14(d)), while the 2-ring of the

neighboring simplices and the edge-sharing simplices are modified by Green-I rule (Figure

6.14(e)). For an octahedral cell, we simply split it into four tetrahedra, without effecting

the neighbors. Then we can apply Red-Green rules as usual.
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6.5 Implementation

In this section, we discuss detailed issues related to the implementation of the frame-

work and some of results that are from our experimental design system.

6.5.1 Input Data

As an input, the framework takes a combination of the vertex setV, the complexC, and

the singular subcomplexS. However, since subsimplices can be induced from maximal

simplices, we do not need all the simplices inC. So, in the implementation, we only take

the data in Algorithm6.1as an input.

1: MULTI -DIMENSIONAL-SUBDIVISION (V, Cmax, Smax)
{V = {xi | xi ∈ R3}
Cmax = max(C) = {S ∈ C | S : maximal}
Smax = max(S) = {T ∈ S | T : maximal}}

2: setM = Cmax ∪ Smax

Algorithm 6.1: MULTI -DIMENSIONAL-SUBDIVISION.

These are the minimum data that are required to reconstruct the complex and the other

information. Additional input can include user-specific preferences for each non-manifold

cases. Since we heavily rely on set operations on the complex, an efficient data structure is

necessary.

6.5.2 Complex Construction

In Algorithm 6.2, we reconstruct the complexC, the decompositionCk, and mark the

type 1 non-manifold simplices according to the following process. Remember thatρ(S)

is 1-ring neighbors ofS. After the process, newly generated subsimplices are checked

to verify whether they are boundary or type 2 non-manifold simplices. The procedure is

explained in Algorithm6.3.
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1: COMPLEX-CONSTRUCT(V,M)
{ρ(S): 1-ring neighbor ofS}

2: initialize eachCk as empty
3: for all k = 0, 1, 2, 3 do
4: for all k-simplexS ∈M do
5: putS in Ck.
6: for all l-subsimplexT ⊂ S with l < k do
7: putT in Ck
8: if T ∈ Ck′, k 6= k′ then
9: tagT as non-manifold type 1

10: end if
11: constructρ(S) if l = 0, or 1
12: end for
13: end for
14: end for
15: return allCk

Algorithm 6.2: COMPLEX-CONSTRUCT.

1: FIND-BOUNDARY-AND-NON-MANIFOLD (Ck)
2: for all k = 1, 2, 3 do
3: for all new(k − 1)-subsimplex (face)T ∈ Ck do
4: if T belongs to only onek-simplexthen
5: tagT as boundary
6: else ifT belongs to more than twok-simplexthen
7: tagT as non-manifold type 1
8: end if
9: end for

10: end for

Algorithm 6.3: FIND-BOUNDARY-AND-NON-MANIFOLD .
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Still, we need to figure out non-manifold type 3 non-manifold simplices and subsim-

plices of type 1 and type 2 non-manifold simplices. It has to be done at the end, because

the process requires type 1 and type 2 information. Here, we denoteµ(S) a number of

maximal simplices that containsS. Algorithm 6.4shows the steps to this process.

1: FIND-TYPE-THREE-NON-MANIFOLD (Ck)
{µ(S): A number of maximal simplices that containsS}

2: for all k = 0, 1 do
3: for all l-simplexT ∈ Ck with l < k − 1 do
4: for all l′-simplexS ∈ Ck with l < l′ ≤ k do
5: if T is a subsimplex ofS anddim(S) = k then
6: increaseµ(T )
7: if µ(T ) ≥ 2 then
8: tagT as non-manifold type 3
9: end if

10: else ifT is a subsimplex ofS anddim(S) < k then
11: if S is non-manifoldthen
12: tagT as the same non-manifold type asS
13: end if
14: end if
15: end for
16: end for
17: end for

Algorithm 6.4: FIND-TYPE-THREE-NON-MANIFOLD .

Once the complex construction is complete, we are ready to choose the appropriate sub-

division rules for each vertex and edge. Note that the subsimplices induced from maximal

simplices are required only for the neighborhood, the boundary, and the manifold test. It

can be safely removed from the memory once every step is done.

6.5.3 Subdivision Process

In Algorithm 6.5, we construct the subdivision matrix and the 1-ring neighbors for each

vertex and edge using the information gathered in the previous steps. Additional user input

is considered to treat the non-manifold region. Then, we outputVnew as the next level of
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the vertices.

1: NEW-VERTEX-POINTS (V, C)
{C =

⋃
Ck}

2: for all vertexx in V do
3: filter ρ(x) so that it contains only the same type of vertices asx.
4: choose the subdivision matrixSx

5: compute the vertex pointvnew by Sx and the filteredρ(x)
6: associatevnew with x
7: putvnew in Vnew

8: end for
9: returnVnew

Algorithm 6.5: NEW-VERTEX-POINTS.

We follow the exactly same steps for each edge to obtain a set of new edge points,

Enew. Once the new vertex and edge points have been computed, we split each simplex.

The process is detailed in Algorithm6.6.

1: SPLIT-SIMPLEX (Vnew, Enew, C)
2: initialize V ′ andC ′ as empty
3: for all k = 0, 1, 2, 3 do
4: for all k-simplexS ∈ C do
5: if k == 0 or 1 then
6: putvnew or enew associated withS in V ′.
7: else
8: if S is an octahedron cellthen
9: compute the cell pointcnew

10: putcnew in V ′
11: end if
12: split S by vnew, enew andcnew if required
13: put the split simplices inC ′
14: end if
15: end for
16: end for
17: returnV ′, C ′

Algorithm 6.6: SPLIT-SIMPLEX.

As a result, we obtain the finer complexC ′ with the new verticesV ′. We may continue

the steps from Section6.5.2to achieve more subdivision level.
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Chapter 7

Applications of Multiresolution Solid
Objects

We demonstrate the potential of our Multiresolution Solid Objects by presenting a se-

ries of practical applications. Each subdivision scheme that has been developed is fully

employed to display the advantages of it.

Shape modeling and heterogeneous material modeling applications where appeared in

our subdivision papers [16, 17, 20] as examples. Implicit solid modeling, orDigitalSculp-

tor was introduced in a paper [61]. Free-form deformation was appeared in a paper pre-

sented in 7th ACM Symposium on Solid Modeling Applications 2002 [16]. The remaining

applications are in preparation for submission.

7.1 Direct Shape Modeling

Through Multiresolution Solid Objects, we can design various shapes and objects with

ease. Since the meshes are based on the simplicial complexes, it offers great flexibility in

topology and model shapes. Also, by using the multi-dimensional framework, we can rep-

resent complicated non-manifold shapes and feature-rich objects such as mechanical parts.

In the following sections, we demonstrate the modeling ability of our MSO framework by

employing the developed subdivision schemes individually.
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7.1.1 Box-spline based Approximate Solid Subdivision Scheme

Figure7.1, Figure7.2, Figure7.3, Figure7.4, and Figure7.5demonstrate examples of

various models that can be obtained by the box-spline based solid subdivision. The tetra-

hedral structure offers the greatest freedom to generate objects of arbitrary topology. Also,

by simple user interaction, we can perform real-time modifications on solids by manipu-

lating control points at arbitrary levels. We can also introduce discontinuities on vertices

or along edges by assigning exceptional rules (i.e., simple bisection without weights) to

desired parts of objects. We could also apply our subdivision scheme to some coarse FEM

tetrahedral meshes to obtain both finer and better quality meshes (Figure7.6).

(a) (b) (c) (d)

Figure 7.1:Our subdivision algorithm can handle not only simple models, but also topo-
logically complex models. (a) Original control points with high genus. (b) Subdivision
level 2. The boundary and the interior are drawn separately. (c) Subdivision level 3. (d)
The interior of the level 3 solid.

(a) (b) (c) (d)

Figure 7.2:More examples of topologically complex models. (a) Original control points
with high genus. (b) Subdivision level 1. (c) Subdivision level 3. (d) The interior of the
level 3 solid.
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(a) (b) (c) (d)

Figure 7.3:Free-form objects. (a) The spiral solid in subdivision level 2. (b) The interior
of the model. (c) SM logo in subdivision level 3. (d) The interior of the model.

(a) (b) (c) (d)

Figure 7.4:Direct model manipulation. (a) The original model. (b) The original control
points. (c) The manipulated model. (d) The manipulated control points.

(a) (b) (c) (d)

Figure 7.5:Examples of models with arbitrary topology and their manipulations. (a) The
original model with genus two. (b) The deformed model. (c) The original model with
genus one. (d) The plane made from the model (c).

7.1.2 Interpolatory Solid Subdivision Scheme over Simplicial Com-
plexes

Figures7.8, 7.9, and7.10 show several examples which have non-trivial topologies

and are oftentimes impossible to generate as a single object by using surface subdivision

schemes (also refer to Figure7.7and Color Plate). In Figure7.11, we use a sweeping curve



7. APPLICATIONS OF MULTIRESOLUTION SOLID OBJECTS 125

(a) (b) (c) (d)

Figure 7.6:Existing tetrahedral models can be subdivided using our scheme to acquire the
finer mesh. (a) The original model with 12936 tetrahedra from FEM simulation. (b) The
interior of the original. (c) Subdivision level 1 with 64680 tetrahedra. (d) The interior of
the subdivided model.

equation with a specially designed mesh to generate a spiral model. Figure7.12and7.13

(see also Color Plate) demonstrates the ability of our new subdivision scheme to handle

non-manifold topology models without having to introduce a special set of rules. Not only

does the scheme successfully display the solid part (which is colored in orange), it also

has no difficulty in processing the surface-only region, which is colored in purple (Figure

7.12). The rule also can be applied to the degenerating case (see Figure7.13and Color

Plate) without a significant modification. In addition, the scheme is also able to define the

transition between two different regions. The weight for most of the results reported in this

paper isw = 1
16

, unless otherwise documented. Besides the shape modeling functionality,

our novel interpolatory subdivision scheme can also be readily suitable for many other solid

modeling applications, such as Direct Manipulation. In contrast to an approximate scheme,

changes on control points directly affect the modeled shape (see Figure7.14). As a result,

this can offer a näıve user more intuitive interaction between control points and a desired

model.

7.1.3 Multi-dimensional Non-manifold Subdivision Framework

We have implemented a basic design system based on the framework. We present a

few examples from the results of our system. Figure7.15 shows a simple screw model
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Figure 7.7: SMI logo and its cross-section created using our interpolatory subdivision
scheme for solids. The new scheme successfully models complex structures inside the
solid. It can also handle non-trivial topology with ease. Note that, throughout this pa-
per the boundary of solid models is colored blue, and the cross-section of solid models is
colored yellow.
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(a) (b) (c)

Figure 7.8:An embedded character. (a) The original control points. (b) The boundary of
the model at level 3. (c) The cross-section of the model which reveals the “S” due to the
vacancy inside the box.

(a) (b) (c)

Figure 7.9: A knot-shaped model that has complex topology. (a) The original control
points. (b) The boundary of the model at level 3. (c) A cross-section of the model.

(a) (b) (c)

Figure 7.10:A simple design for space shuttle using our subdivision tools. (a) The original
control points. (b) The boundary of the model at level 3. (c) Cross-sections of the model.

(a) (b) (c)

Figure 7.11:The scheme can be used to design a practical model such as a spiral. (a) The
original control points. (b) The boundary of the model at level 3. (c) Cross-sections of the
model.
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(a) (b) (c)

Figure 7.12:A torus model with non-manifold topology. (a) The original control points.
(b) Cross-sections of the control points. (c) Cross-sections of the model at level 4. The
purple region indicates the part of the model where only surface information is offered.

(a) (b) (c)

Figure 7.13:A segmented ring model. (a) The original control points. Each segment meets
at a line which forms a non-manifold. (b) The boundary of the model at level 4. (c) A
cross-section of the model at level 4.

(a) (b) (c)

Figure 7.14:A direct manipulation on control points. (a) The original control points and
their modification by a user. (b) The shape generated using an approximate scheme. (c) The
interpolatory scheme case. The changes on the model are more interactive and intuitive.

by less than 20 control points. Four blades consist of surfaces, where the core is a solid

object. The cross-section shows the inner structure of the core. In Figure7.16, we use a

simple spiral equation to generate the solid spring part. The valve part comprises a solid

cap and a cylinder which is a surface model. All parts are represented within a single

complex mesh and the non-manifold parts are smoothly blended. In Figure7.17, we have
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designed a part of a ship that consists of the solid bow, a few decks and a part of the

hull. Figure7.18 illustrates a mechanical part with non-trivial topology. The handle is a

2-manifold surface model, whereas the other parts are all solid. We use the singularity rules

to make the rounded corners, the sharp corners, the flat surfaces and the circular holes. The

framework has the potential to be a great animation character modeling tool, as shown in

Figure7.19. Oftentimes, animation characters contain manifolds of different dimensions,

and our framework can handle them easily. In all figures, we use the same color scheme

to represent different manifolds. Blue color represents 2-manifolds or the boundaries of

3-manifolds, while orange color is for the insides of 3-manifolds. Each vertex and edge

are colored according to the subdivision rules that are applied to them. Red vertices are

singular, and green and blue vertices are the vertices where we apply the 1- and 2-simplex

rules, respectively. The same color scheme is applied for the edges. Table7.1 shows

the number of maximal simplices and the processing time on an Intel Pentium 4 2.4GHz

machine with 1 gigabytes of memory. Note that actual number of simplices that represent

each model is far greater than the number of maximal simplices listed below.

Model Maximal simplices Maximal simplices Time
(initial) (level 3) (sec.)

Screw (Figure7.15) 32 4736 0.461
Ship hull (Figure7.17) 46 4988 0.463

Mechanical part (Figure7.18) 179 58608 16.343
Valve (Figure7.16) 388 142376 96.098

Table 7.1:Examples of running times of the multi-dimensional subdivision framework.

7.2 Heterogeneous Material Modeling

One of the great advantage of our Multiresolution Solid Objects over other solid repre-

sentations is the ability to represent heterogeneous materials, especially continuously vary-

ing properties. Moreover, combined with the multi-dimensional scheme, we can acquire
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(a) (b) (c)

Figure 7.15:A screw model by the combination of 2- and 3-manifolds. It also includes
creases around the 3-manifold boundary. (a) Initial control mesh. (b) After 3 levels of the
subdivision. (c) The cross-section of 3-manifold region.

(a) (b) (c)

Figure 7.16:A valve model with a spring. The valve and the cylinder consists of 2- and
3-manifolds. The bottom part has creases. (a) Initial control mesh. (b) After 3 levels of the
subdivision. (c) The cross-section of the model.

(a) (b) (c)

Figure 7.17:The bow and the part of the hull from a ship model. (a) Initial control mesh.
(b) After 3 levels of the subdivision. (c) The cross-section of 3-manifold region.

smooth material transition between surfaces and solids.

First, we present heterogeneous models represented by the box-spline based scheme. In



7. APPLICATIONS OF MULTIRESOLUTION SOLID OBJECTS 131

(a) (b) (c)

Figure 7.18:A model of a mechanical part with the complex topology. (a) Initial control
mesh. (b) After 3 levels of the subdivision. (c) The cross-section of 3-manifold region.

(a) (b) (c)

Figure 7.19:Insect characters for computer animation. (a) Initial control mesh. (b) After 3
levels of the subdivision. (c) The cross-section of 3-manifold region.

Figure7.20and Figure7.21, it is clearly shown how material information is incorporated

with geometry by our solid subdivision scheme. Because a solid generated by our algo-

rithm exhibits high-order continuity, we can note the smooth transition of material data

inside the objects. Instead of dealing with 3D coordinates, each model contains material

information as a 4th or even higher order coordinates. The same subdivision process is

applied to the extra coordinates. We use a1283 voxel grid to render each scene. A value

for each voxel is obtained by7.1. One potential cause for concern is that our scheme is an

approximating, not an interpolating one, which in fact causes a discrepancy between the

original and the values introduced by the algorithm. However, if the original model actually

contains many tetrahedra, it converges rapidly even in the first couple of levels. Hence the

error is relatively small. In many practical cases, it is negligible.



7. APPLICATIONS OF MULTIRESOLUTION SOLID OBJECTS 132

The interpolatory scheme has a unique advantage. Since it interpolates the original

value, we can perform physical simulation with assigned values without approximating.

We can assign material properties to control points and apply the exact same subdivision

rule on the control mesh to acquire smooth interpolated properties. Figure7.22shows an

example of the model with color information associated with control points. The colors

between control points are continuously interpolated by the subdivision rules. Figure7.23

presents various solid models with material properties. Simple diffusion process is used to

initialize material data at level 1. Control points at higher levels are smoothly interpolated

by the subdivision scheme. This process is completely transparent in the interpolatory

scheme.

Finally, Figure7.24shows a non-manifold object with material properties employing

our multi-dimensional scheme. We assign tension values at the initial level, and the subdi-

vision rules smoothly blend them into the structure.
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(a) (b) (c) (d)

Figure 7.20:Not only can subdivision solids represent geometry, but they can also be used
to interpolate other data over 3D space. (a) Original control points and assigned colors. (b)
Faces are transparently rendered by bilinear interpolating. (c) Level 3 subdivision solid.
(d) The distribution of vertices inside. Colors are smoothly interpolated.

(a) (b) (c) (d)

Figure 7.21:Smooth distribution of densities inside a subdivision solid. The highest density
is given to the central point. The volume is visualized using the latest low-end 3D graphic
acceleration hardware.

(a) (b) (c)

Figure 7.22:A model with a material property represented by colors. (a) The original
control points with assigned colors. (b) The boundary of the model at level 5. (c) A cross-
section of the model. Colors are smoothly interpolated.
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(a) (b) (c) (d)

Figure 7.23:Various solid models with material properties. Simple diffusion process is
used to initialize material data at level 1. Control points at higher levels are smoothly
interpolated by the subdivision scheme.

(g) (h) (i)

Figure 7.24:A material property representation. (a) Initially assigned values. (b) After 3
levels of the subdivision. (c) The cross-section of 3-manifold region.
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7.3 Implicit Solid Modeling

Even though we have emphasized the advantage of the MSO representation as a mod-

eling tool, it cannot compete with implicit function representations in editing, trimming,

and sculpting. Implicit function representations inherently provide better solutions for set

operations including union, intersection, and subtraction, collision detection, and presen-

tation of simple primitives that can be easily defined by distance functions. Motivated by

this and a number of disparate areas of research, including volumetric sculpting [3, 72, 93],

we have implementedDigitalSculpture, a subdivision-based interactive implicit modeling

system [61]. Based on the interpolatory solid subdivision scheme over unstructured hexa-

hedral meshes [60], which are presented in AppendixC, the system utilize the computation

power of the subdivision to evaluate the scalar field associated with hexahedral meshes.

However, instead of manipulating the geometry, we only control the scalar fields over the

meshes. An object is represented as a level-set surface of the scalar field extracted by the

marching tetrahedra algorithm [90]. Naturally, the system can support set operations such

as CSG operations and copy-and-paste function, local deformation, and direct modeling on

surfaces. Some examples created by the system are shown in Figure7.25and Figure7.26.

Figure 7.25:Virtual sculptures created in our DigitalSculpture modeling environment.
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Figure 7.26:(a-c) Surfaces created with CSG operations in our implicit subdivision solid
approach. (d-e) Objects created by curve sweeping - addition and subtraction of materials,
respectively.

7.4 Free-form Deformation

Free-form deformation (FFD) is one of the important applications to which the solid

subdivision is directly applied. It plays a crucial role in graphics, design and manufacturing.

Usually, FFD involves generating parametric solids and translating model coordinates back

to parametric space [89, 77, 23], so that changes to the solids can be reflected in the models.

Our approach is similar to that of MacCrackenet al.[59]. However, unlike the tensor-

product nature of Catmull-Clark solids and volumetric splines, our solid is much more

flexible due to the tetrahedral structure of the mesh. The following is an overview of our

implementation of FFD.

(a) Generate an appropriate mesh that contains the model to be deformed.

(b) Subdivide the mesh up to the user-specified level using our new solid subdivision

scheme.

(c) Calculate tetrahedra coordinates for each vertex in the model on the final level.

(d) The user then interactively moves control points in any coarser level.

(e) Recalculate the coordinates by following the subdivision matrices.
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The barycentric coordinates (Figure7.27(a)) are easy to compute. Suppose a model

vertexp lies within a tetrahedron[v0,v1,v2,v3]. The coordinate(c1, c2, c3) is given by

p = v0 + c1 u1 + c2 u2 + c3 u3, (7.1)

whereui = vi − v0 for i = 1, 2, 3. Conditions0 ≤ c1, c2, c3 ≤ 1 and0 ≤ c1 + c2 + c3 ≤ 1

are required to be in the tetrahedron. We can solve the linear system
c1

c2

c3

 =


...

...
...

u1 u2 u3

...
...

...


−1 

...

p− v0

...

 ,

to obtain the coordinate. If a vertex is in an octahedral cell, we split the octahedron into

4 parts using the major diagonal and compute the barycentric coordinate within the corre-

sponding tetrahedron (Figure7.27(b)).

v1

v3

v2

v0

p

(a) (b)

Figure 7.27:(a) Barycentric coordinates are uniquely determined by an affine combination
with respect to a tetrahedron that contains the point. (b) An octahedron is split into 4 parts,
using a major diagonal.

Figure7.28and Figure7.29show two applications of FFD. The mesh does not neces-

sarily have a simple topology (i.e., genus zero), as shown in Figure7.30. It is also possible

that we manipulate objects locally (Figure7.31), by simply assigning control meshes to

certain region of an object that we want to deform. Note that all processes are done in

real-time except barycentric coordinate computation. Even the coordinate computation can
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be done in a matter of seconds. Most of time is consumed by intersection checks between

tetrahedra/octahedra and model vertices. We are working on several methods to accelerate

these checks.

(a) (b) (c) (d)

Figure 7.28:Free-form deformation of a car model. The model contains 2244 vertices
with 21 different components. (a) The original model. (b) The subdivision mesh. (c)
The deformed model. (d) Underlying subdivision solid. All deformation has been done in
real-time.

(a) (b) (c) (d)

Figure 7.29:Another example of free-form deformation of an industrial filter block model.
The model contains 24877 vertices with more than 49000 faces, and is converted from
the B-spline surface model. (a) The original model. (b) The subdivision mesh. (c) The
deformed model. (d) The deformed model in wireframe.

7.5 High Quality Surface Partitioning and Fitting for
Subdivision

Currently, subdivision surfaces are extensively used in entertainment and game indus-

try, where the visual quality is of most significance. However, subdivision surfaces have

not yet gained their industrial acceptance in engineering design, analysis, and manufactur-

ing applications, mainly due to a lack of higher smoothness near extraordinary vertices.
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(a) (b) (c) (d)

Figure 7.30:A mesh with non-trivial topology. In this case, our deformation mesh contains
a hole. (a) The original model. (b) The subdivision mesh in level 2. (c) The part of the
model (the central cylinder) that is inside the hole has not been changed. (d) The deformed
subdivision mesh.

(a) (b) (c) (d)

Figure 7.31:Localized free-form deformation. We can choose any region of the model and
perform FFD. (a) The original model. (b) Locally deformed model. (c) The original model.
(d) Locally deformed model. Each model contains 3760 and 7854 vertices, respectively.

The situation is aggravated for the subdivision solids, since there is no proper tool to prove

evenC1 smoothness. One approach to avoid these difficulties is not to deal with the ex-

traordinary cases, but rather to make the mesh regularalmost everywhere, except the region

where the smoothness is less important, such as sharp features or planar areas. Toward this

goal, we begin with general surface subdivision cases and try to extend it to solid cases.

We propose a new remeshing and data fitting technique to acquire high quality meshes for

the subdivision method. The method consists of the following four steps:

(a) Feature Searching

(b) Domain Partitioning

(c) Conformal Parameterization
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(d) Boundary and Surface Fitting

Given an arbitrary triangular mesh, we first find features represented by a set of vertices

and edges during the Feature Searching stage. This set serves as a guide to the partitioning.

At the Domain Partitioning step, we seed the surface with triangles which are furthest from

the features. Then, we grow each region from the seeds to form a set of surface patches

over the mesh. In the next step, we find the conformal parameterization from the canonical

domain to each patch using Least Square method and a specific conformal map. Once the

maps are found, we initialize control points as a regular lattice in the canonical domain and

map them back to each patch using said conformal maps. Finally, Least Square fitting is

utilized to fit the initial control points to the original mesh with a minimal error.

By following this procedure, we can have some unique benefits over the existing sub-

division surface fitting:

(a) It provides a conformal map for each patch which are topologically isomorphic to the

unit square.

(b) In each patch, all the initial control points are in regular configuration,i.e. they have

the same regular valence numbers.

(c) All the extraordinary vertices are on, or close to, the feature sets of a given mesh, where

the smoothness has less or no importance.

7.5.1 Problem Statement

Suppose that our input consists of a triangular mesh, expressed by a set of verticesV =

{x1,x2, · · · ,xn | x ∈ R3} and a set of triangles, or 1-simplices,F =
{
{xi1 ,xi2 ,xi3} | 1 ≤

ij ≤ n, j = 1, 2, 3
}

. We denote this pair byM = (V ,F). In particular, we assume that

our mesh as an input satisfies the following properties:
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1. F and all proper subsets of its members forms a simplicial complex. For example,

there is no intersection between the triangles except their edges. Formally, we define

the complex asC = {S | S ⊂ f for somef ∈ F}.

2. F forms a 2-manifold surface. For example, there is no edge shared by 3 or more

triangles or a region only consisting of line-segments.

3. F represents a smooth manifold except the features.

Our goal is to generate a set of control pointsP for a subdivision scheme which repre-

sents the surfaceF in the limit. Any stationary subdivision scheme which is based on the

evaluation of the splines can be guaranteed a high order of smoothness on regular valence.

For instance, the Loop’s scheme [58] can achieveC2 smoothness on the regular triangular

configuration where each vertex has a valence 6, whereas it is onlyC1 over the extraordi-

nary vertices. In general, most of the know stationary subdivision surface scheme can only

guaranteeC1 smoothness over the extraordinary points. Therefore, it is important to have

regular valences for as many initial control points as possible. However, it is not possible

to have vertices with the regular valence everywhere unless the surface is topologically

equivalent to the torus, or has the genus 1. Therefore, for general cases, our approach tries

to reduce the number of the extraordinary points by segmenting the surface into several

patches.

7.5.2 Feature Searching and Partitioning

We define features as the region where the manifold defined by the meshM is not

smooth, or non-differentiable. The features are embedded in the mesh as points, or curves.

For the feature detection, we proceed as follows:

1. Filter the surface to suppress the extremes and reduce the noise.
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2. Compute maximal and minimum curvaturesκ1 andκ2.

3. Find the vertices such that|κ1| < τ1 and|κ2| > τ2.

For the filtering, we choose an anisotropic smoothing filter suggested by Meyeret

al.[63]. This reduces the number of edges falsely detected as feature, while preserves

the characteristic features. The curvaturesκ1 andκ2 are computed by using the method

explained in [63] which offers relatively accurate values. The thresholdsτ1 andτ2 are de-

termined empirically, but it is relatively easy to predict the proper values, depending on

what type of objects the original meshes coming from. Even though the feature vertices

are found, we need to connect them into the feature curves, so that they do not cluster in

thin areas. Let us denote the feature verticesVfeature. The following procedure is used to

ensure thin features.

1. Compute local maxima inVfeature using the curvature values.

2. Beginning from each local maxima, try a neighbor search within a threshold to find

another local maxima. If found, we join them.

To ensure the process, the assumption is made that the sampling rate of the given mesh

is relatively uniform. Otherwise, the length of each edge should be taken into considera-

tion during the search process. Once the feature set is constructed, we partition the entire

domain using the information. The procedure is as follows:

1. For each vertex, compute the distance function from the feature set. We employ a

simplified version of multi-source Dijkstra algorithm.

2. For each face, compute the distance function by averaging the values from its ver-

tices.

3. Identify the local maxima among the faces.
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4. From the maxima, grow the patches by adding 1-ring neighbors a time. The growing

speed is governed by the curvature.

5. If two patches meet together and their intersections are far from the feature, we merge

them.

We denote the partition asP = {P1, ..., Pn} wherePi is each patch.

(a) (b) (c)

(d) (e) (f)

Figure 7.32:Feature Searching and Partitioning Procedure. (a) A rocker arm model. (b)
Mean curvatures. (c) Found features. (d) Feature distance field. (e) The partitioning process
in progress. (f) The final result.

7.5.3 Conformal Parameterization

As our surface has been segmented to patches which have the same topology as a disc

or a unit square, the next target is to find the map from the patches to the unit square. The

map will serve as a parameterization of each patch, where we perform the approximation

later. Even though it is possible to choose arbitrary parameterization, we choose conformal
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maps as our parameterization. A map is calledconformalif it preserves local angles. For

instance, iff is a conformal map from the unit square to 2-manifold in the space, then the

images of iso-u and iso-v curves on the manifold are always mutually orthogonal. For each

partition, we find a conformal map from the unit square as follows:

1. Find 4 fixed points for each patch from the intersection between the feature set and

the boundary of the partition.

2. Compute a conformal mapϕi (or the inverse of it) from the patchPi to the unit square

by using the fixed points and the Least Square conformal map procedure [56]

We use an available Least Square Conformal Map solver based on [56]. The solver

tries to minimize the harmonic energy and the results are reasonable if the patch does not

contains much concave region on its boundary.

7.5.4 Boundary and Surface Fitting

The fitting procedures are as follows:

1. Insert initial control points on the boundary of the canonical domain of each patch.

The number of control points are governed by overall curvature of the patch.

2. If two adjacent patches has different number of control points, we take the maximum.

3. Generate iso-curves and regular lattice on each canonical domain.

4. Map each lattice points back to the surface by the conformal maps.

5. Approximate the feature sets using Singular Value Decomposition.

6. Approximate each partition with the fixed control points that approximate the feature

sets.
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7.6 Volume Data Filtering

Most of existing volume data filtering employ tensor product of low dimensional filters.

Due to their symmetry, tensor-product filters cannot preserve features. We have already

exploited the power of non-tensor-product trivariate box spline in one of our subdivision

schemes. Taking advantage of their asymmetry, we develop a family of anisotropic trivari-

ate filters that can be used for feature preserving filtering, volume data refinement, and

volume data fairing. We utilize the recursive power of the splines and compute the filters

using the subdivision method for fast evaluation. Furthermore, by employing the box-spline

based solid subdivision scheme, we develop a filtering technology for data over arbitrary

tetrahedral meshes.

7.6.1 Trivariate Box Splines

We first define a trivariate box spline which serves as a convolution kernel for our

filtering method. We use the trivariate double-directional box spline which is described in

Chapter4. The particular spline is spatially asymmetric as shown in Figure4.5. Therefore,

we can choose 4 different basis functionsMΞ1 , ...,MΞ4 such that the diagonal consist of

the vertex 8 and 12 (Figure4.6) matches with the direction of each of four major diagonals

of the point surrounded by 8 voxels. The four major diagonal direction can be represented

by the set of vectors{d1 = (1, 1, 1),d2 = (1,−1, 1),d3 = (−1, 1, 1),d4 = (−1,−1, 1)}.

Our general filter has a form of:

F (x) =
4∑

i=1

wiMΞi
, (7.2)

where we need to decide the weightwi by the gradient of each voxel.
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7.6.2 Gradient Computation using Linear Regression

We require to compute a gradient for each voxel, to understand features and their di-

rections. [68] suggested a general method to compute gradient field for volume data using

simple linear regression. The size of the voxel neighbor which are used in the computation

of the gradient field should coincide with the size of the filter that a user desires. Suppose

x is a computed gradient vector, then we define the weight by computing the directional

weight:

$i =

√
1− x · di

|x||di|
, (7.3)

and normalizing it:

wi =
$i∑
j $j

. (7.4)

7.6.3 Kernel Evaluation

Each basis functionMXii of the filter can be easily evaluated by the subdivision process

described in Chapter4. Depending on the size of the kernel and the direction of each

basis function, we apply the subdivision coefficients and the weightwi to the appropriate

number and direction of 3D convolution kernel. This process ensures the fast and rigorous

evaluation of the filter function. Since the Linear Regression process can be computed

by series of convolutions, we can actually achieve the filtering by convoluting appropriate

kernels multiple times.
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Chapter 8

Conclusion

In this dissertation, we present our recent research results, ongoing research and future

research directions within the generalized framework of the solid subdivision method. Our

proposed framework, Multiresolution Solid Objects, combines the advantages of current

solid modeling representations, yet it provide a strong solution to the challenges that mod-

ern technology poses. Through the MSO, we can model, design, and manipulate arbitrary

solid objects and multi-dimensional non-manifold objects. Underlying structured meshes

based on simplicial complexes present great flexibility and simplicity during the geometric

design. We have developed a series of novel solid subdivision schemes, which award the

MSO such benefits that other existing representation technique cannot provide. Founded

by sound mathematical theories, the subdivision schemes satisfy many desirable properties

under ideal situations. By employing state-of-the-art mathematical tools, we have proved

the analytical behavior of our solid subdivision schemes in practical cases.

In addition, we have implemented a variety of applications to demonstrate the potential

of the MSO framework. Direct shape design, arbitrary manifold object modeling, non-

manifold object modeling, boundary and feature representation, and heterogeneous mate-

rial modeling are a few examples that we have presented to prove the advantages of the

MSO in geometric modeling and shape design. We have also implemented free-form de-

formation and other applications that can draw interest of computer graphics community in
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general.

For future research, we can pursue two separate, but closely related topics: theories and

applications. Theoretically, the solid subdivision schemes have not been fully proved due

to lack of adequate mathematical tools. These theoretical supports are essential not only to

improve the existing schemes but also to derive new solid schemes. Therefore, intensive

survey on current mathematical techniques are needed to make improvement on the MSO

framework. For applications, it is necessary to develop a set of software systems geared

up to meet practical needs, such as combination of modeling and analysis, layered and

functionally graded material modeling, direct editing and trimming, and interactive design.

In fact, the theoretical advances will be motivate by the practical needs, and the advances

in theory will widen the application of our framework.
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Appendix A

Subdivision Coefficients for Box-Spline
Based Subdivision Scheme
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Figure A.1:The subdivision coefficients of the box-spline based solid subdivisionare em-
bedded in the part of the octet-truss regular structured mesh. All the values are to be
multiplied by 1

32
. Since it is 3D mesh, each layer of the mesh is displayed separately. The

bold circled vertex indicates the center of the mesh.
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Figure A.2:The vertex mask for the box-spline based solid subdivision.
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Figure A.3:An edge mask for the box-spline based solid subdivision (a).
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Figure A.4:An edge mask for the box-spline based solid subdivision (b).
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Figure A.5:An edge mask for the box-spline based solid subdivision (c).
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Figure A.6:An edge masks for the box-spline based solid subdivision (d).
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Figure A.7:An edge masks for the box-spline based solid subdivision (e).
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Figure A.8:An edge masks for the box-spline based solid subdivision (f).
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Figure A.9:The cell masks for the box-spline based solid subdivision.
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Appendix B

Samples of Solid Subdivision Matrices

In this chapter, we demonstrate explicit forms of the subdivision matrices of the box-

spline based solid subdivision scheme in three particular cases. Note that different config-

urations of neighbors yield different eigenstructure of the system.

B.1 Extraordinary Vertex Subdivision Matrix

The matrixSv shown in FigureB.1 is the subdivision matrix for an extraordinary vertex

with the valence 5. The size of the matrix is20× 20. The subdivision matrices for extraor-

dinary vertices with different valences have the similar structure. The first 6 eigenvalues

of the matrixSv can be computed by the eigenvalues of the top-left6 × 6 submatrix. The

values are:

{1, 5

16
,
15 +

√
70

80
,

3

20
,
1

8
,
1

8
}.

B.2 Extraordinary Edge Subdivision Matrix

The matrixSe in FigureB.2 is the subdivision matrix for an extraordinary edge with the

valence 4. The size of the matrix is19× 19. The major diagonals are chosen in the similar

way to the first case of Figure4.20. The subdivision matrices for extraordinary vertices

with different valences have the similar structure. The first 11 eigenvalues computed by the
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top-left11× 11 submatrix is:

{1, 45 +
√

985

160
,
25 + 6

√
2

80
,
25 + 6

√
2

80
,
19

80
,
25− 6

√
2

80
,
25− 6

√
2

80
,

3

16
,
13

80
,
13

80
,
1

8
}.

The different choices of the major diagonals gives a different subdivision matrix and the

eigenstructure. If we choose all the diagonals toward the extraordinary edge, we acquire

a different subdivision matrix as shown in FigureB.3. In this case, there is no simple re-

ordering of the vertices inp0 that gives the block structure. However, we can still compute

all the first 11 eigenvalues fromS′e:

{1, 1

2
,
1

2
,
1

2
,
25 +

√
385

160
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

8
}.

As previously mentioned, the difference between the eigenvalues of the subdivision

matrices due to the choice of the major diagonals are subtle if the edge valence is low.

However, if the edge valence becomes higher, in particular over 8, the difference in the

eigenstructure of the subdivision matrices become larger.
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Figure B.1:The subdivision matrix for an extraordinary vertex with the valence 5.
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Figure B.2:The subdivision matrix for an extraordinary edge with the valence 4 (a).
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Figure B.3:The subdivision matrix for an extraordinary edge with the valence 4 (b).
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Appendix C

Interpolatory Solid Subdivision Scheme
over Unstructured Hexahedral Meshes

We propose and derive a novel, interpolatory solid subdivision scheme over unstruc-

tured hexahedral meshes. The scheme is derived from a generalization of tri-cubic La-

grange interpolating polynomials to arbitrary topologies.

The interpolatory solid subdivision scheme over unstructured hexahedral meshes was

introduced in a recent paper published in the Visual Computer [60]. The scheme was

employed to implement DigitalSculpture which is accepted for publication in Graphical

Models [61]. The contents of the AppendixC.1 were graciously provided by Kevin T.

McDonnell and were taken directly from [60].

C.1 Derivation of Subdivision Scheme

C.1.1 Rules for Meshes of Regular Topology

First we present subdivision rules for regular hexahedral meshes, in which each vertex

in the mesh has valence six. In SectionC.1.2we generalize the rules to handle topologically

non-regular hexahedral meshes.
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C.1.1.1 Cell-Point Rule

The cell-point subdivision mask for our scheme is obtained by computing the different

naive scheme’s cell-masks for the four possible orientations of the main diagonal in a cell.

Adding these masks and normalizing the weights produces the averaged mask. The cell-

point rule is:

cp =
6w + 1

8

8∑
i=1

pi −
w

4

24∑
i=1

qi. (C.1)
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Figure C.1:Cell-point mask for our new subdivision scheme. The weights for thep-vertices
andq-vertices are, respectively:wp = 6w+1

8
, wq = −w

4
. The opaque rendering on the left

shows the cellular structure of the mask.

C.1.1.2 Face-Point Rule

Averaging the six naive scheme’s face-point masks produces the averaged mask seen in

FigureC.2. The face-point rule is:

fp =
2w + 1

4

4∑
i=1

pi +
w

4

8∑
i=1

qi −
w

4

8∑
i=1

ri −
w

8

16∑
i=1

si. (C.2)

C.1.1.3 Edge-Point Rule

Averaging the 12 naive scheme’s edge-point masks produces the averaged mask seen

in FigureC.3. Note that many of the terms cancel each other, which results in a mask with
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Figure C.2: Face-point mask for our new subdivision scheme. The weights for thep-
vertices,q-vertices,r-vertices ands-vertices are, respectively:wp = 2w+1

4
, wq = w

4
, wr =

−w
4
, ws = −w

8
.

fewer vertices than one might expect. The edge-point rule is:

ep =
1

2

2∑
i=1

pi +
w

4

8∑
i=1

qi −
w

4

8∑
i=1

ri. (C.3)
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Figure C.3: Edge-point mask for our new subdivision scheme. The weights for thep-
vertices,q-vertices andr-vertices are, respectively:wp = 1

2
, wq = w

4
, wr = −w

4
. The

cancelling of terms in the derivation leads to a mask of smaller size than expected.

C.1.2 Rules for Meshes of Non-Regular Topology

As we show shortly, our new subdivision scheme is very amenable to application over

arbitrary hexahedral meshes since it does not depend on a particular ordering of the ver-

tices or choice of cell diagonal. The rules must be generalized to handle hexahedral meshes
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that featureextraordinary edges(i.e., edges with greater than four or less than four adja-

cent faces) andextraordinary vertices(i.e., vertices not of valence six). Fortunately, the

rules can be generalized easily to handle these non-regular topological conditions. We now

investigate how the rules must be changed to accommodate such situations.

C.1.2.1 Cell-Point Rule

In order to define subdivision rules and masks that can be applied over non-regular

hexahedral meshes, we must examine the subdivision masks and determine which vertices,

if any, aresharedby cells that define the mask. We must also determine if the duplica-

tion or absence of shared vertices in a non-regular mesh causes the subdivision masks to

be ill-defined. For instance, inspection of the cell-point mask in FigureC.1 reveals that

the vertices adjacent to the cell itself can be identifiedsolelyby locating those vertices 1-

adjacent to the cell’s vertices. That is, the subdivision mask is obtained by taking vertices

from the cell itself, as well as the cellsface-adjacentto the cell. This means that Equa-

tion C.1 can be used to compute a cell-point even when the neighboring connectivity is

very complicated. Hence, the cell-point subdivision mask does not require modification in

order to handle arbitrary hexahedral meshes.

C.1.2.2 Face-Point Rule

Unlike the cell-point rule, the averaged scheme’s face-point ruledoesrequire modifica-

tion in order to handle extraordinary edges. As illustrated in FigureC.2, there are several

vertices labelledr in the middle of the mask that are shared by adjacent cells that define

the mask. Under a regular topological setting, there are eight suchr-vertices, two per edge.

If one or more of the edges connecting these vertices is extraordinary, which is the case in

FigureC.4, then a special rule is required to handle the extra vertices introduced into (or

subtracted from) the mask. Note that vertices labelledq, although shared by adjoining cells,
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can be uniquely identified by obtaining them from the two cells that meet at the face itself.

Since we assume that each face has at most two adjacent cells, there is never a problem in

locating these eightq-vertices.

As we mentioned, there are eightr-vertices in the regular case of the face-point mask.

Irregularities arise when one or more of the verticesp is extraordinary. Specifically, for

each edgepipj that is adjacent to more than four cells, the weight of each suchr-vertex

(now indicated byt in FigureC.4) becomes−w
8
. Note that there will be at most two such

vertices per end-point per edge since each face is shared by at most two cells (FigureC.4).

The subdivision formula for the face-point is therefore modified as follows:

f̂p =
2w + 1

4

4∑
i=1

pi +
w

4

8∑
i=1

qi −
w

4

8−2N∑
i=1

ri −
w

8

16∑
i=1

si −
w

8

4N∑
i=1

ti

whereN indicates the number of extraordinary edges in the face. It is easy to confirm that

this rule reduces to EquationC.2when the mesh is regular.
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Figure C.4:Face-point mask for extraordinary vertices and edges. A mask containing two
extraordinary vertices is shown here. The edge drawn in bold is an extraordinary edge. The
weights for thep-vertices,q-vertices,r-vertices,s-vertices andt-vertices are, respectively:
wp = 2w+1

4
, wq = w

4
, wr = −w

4
, ws = −w

8
, wt = −w

8
.
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C.1.2.3 Edge-Point Rule

The averaged scheme’s edge-point mask must also be modified in order to handle two

possible irregularities: 1. more than (or less than) four faces are incident on the edge (Fig-

ure C.5a); and/or 2. one or more adjacent edges is extraordinary (FigureC.5b). The first

situation arises when one or both of the edge’s end-points are extraordinary vertices. The

second circumstance appears when a vertex normally shared by adjacent cells (i.e., anr-

vertex in FigureC.3) is replaced by two vertices because of a local topological irregularity.

We call this kind of vertex a “split” vertex. (Recall that a similar situation can occur with

the face-point mask when an extraordinary edge causes a normally shared vertex to be re-

placed by two distinct vertices; see FigureC.4.) In the regular case of four incident faces,

eachp-vertex receives a weight ofw
4

and eachr-vertex receives−w
4

(FigureC.3). For the

general case ofN incident faces, eachpi is given weightw
N

, while eachri receives− w
N

.

FigureC.5a illustrates an edge with five incident faces and the resulting vertex weights.

In FigureC.5b we see that the edge drawn in bold in the middle of the mask has a non-

regular number of adjacent edges, which causes the weights of split vertices (labelleds) to

change from−w
4

to−w
8
. In the general case ofN incident faces, this weight for a split ver-

tex is− w
2N

. These two non-regular topological conditions are subsumed by the following

modified edge-point formula:

êp =
1

2

2∑
i=1

pi +
w

N

2N∑
i=1

qi −
w

N

2N−M∑
i=1

ri −
w

2N

2M∑
i=1

si (C.4)

whereN is the number of faces incident on the edge, andM is the number of extraordinary

edges incident on thepi’s that appear in the mask (i.e., the number of “split” vertices). Note

that EquationC.4reduces to EquationC.3for regular meshes (i.e., N = 4, M = 0).
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Figure C.5:Edge-point masks for non-regular topological settings. (a) Extraordinary edge.
The weights for thep-vertices,q-vertices andr-vertices are, respectively:wp = 1

2
, wq = w

5
,

wr = −w
5
. (b) Regular edge containing one extraordinary vertex. The weights for thep-

vertices,q-vertices,r-vertices ands-vertices are, respectively:wp = 1
2
, wq = w

4
, wr = −w

4
,

ws = −w
8
.

C.2 Analysis of Subdivision Scheme

C.2.1 Convergence and Continuity for Meshes of Regular Topology

We will use techniques explained by Dynet al. [38] to prove that our subdivision

scheme isC1 continuous over hexahedral meshes of regular topology. Since our subdivi-

sion scheme has no closed-form expression for its basis functions (FigureC.6), we cannot

simply extract the basis functions and examine them analytically. Therefore, we rely on

analysis of subdivision matrices and characteristic functions to study the scheme’s con-

vergence and continuity properties. By showing that the characteristic polynomials of the

subdivision process have certain properties, we will demonstrate that the algorithm gener-

ates volumes that areC1 in the limit.

Note that a subdivision algorithm can be expressed in matrix form aspk+1 = Spk,

wherepk is the vector of points at subdivision levelk, S is the local subdivision mask,

andpk+1 is the resulting vector of new points. Generally, any binary stationary subdivision
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(a) (b) (c)

Figure C.6:Renderings of the subdivision algorithm’s basis function. The scale indicates
the contribution of a vertex to its neighbors. The basis function was computed explicitly via
subdivision. In (b) and (c) we have changed the viewpoint to highlight better the structure
of the basis function.

scheme for solids can be written as

Pk+1(z) = a(z)Pk(z
2), z ∈ R3, (C.5)

wherePk(z) =
∑

µ∈Z3 pk
µz

µ is a formal generating function associated with the control

pointspk = {pk
µ}µ∈Z3 at the levelk, anda(z) is the characteristic polynomial derived from

the local subdivision matrixS:

a(z) =
∑
µ∈Z3

aµz
µ. (C.6)

Theorems5.1and5.2provide us the sufficient conditions to guarantee theC1 continuity

of the subdivision scheme. The conditions for the norm of the matrix will be confirmed by

means of the relation explained in Equation5.12. During most of the process, we will rely

on numerical experiments to verify the satisfaction of the conditions.

The characteristic polynomial of the subdivision scheme can be computed by successive

applications of the schemes over a regular mesh in 3D. It has the form of

a(z) =
∑
µ∈Z3

aµz
µ, (C.7)
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where the coefficients are given by

aµ =
6w + 1

8
, µ = (±1,±1,±1)

aµ = −w

4
, µ = (±1,±1,±3)

aµ =
2w + 1

4
, µ = (0,±1,±1)

aµ =
1

4
, µ = (±1,±1,±2)

aµ = −w

4
, µ = (0,±1,±3)

aµ = −w

8
, µ = (±1,±2,±3)

aµ =
1

2
, µ = (0, 0,±1)

aµ =
w

4
, µ = (0,±1,±2)

aµ = −w

4
, µ = (0,±2,±3)

aµ′ = aµ, if µ′ = σ(µ), σ ∈ S3.

Here,S3 denotes the set of all permutation over{1, 2, 3}, which is followed by the symme-

try of the subdivision mask.

It is relatively easy to confirm that the scheme is convergent by means of eigenvalue

analysis of the subdivision matrix. In particular, the subdominant eigenvalue of our sub-

division scheme is strictly less than 1 forw < 0.5, which is sufficient to show its con-

vergence. The characteristic polynomial of the subdivision scheme can be factored by

(1 + z1)
2(1 + z2)

2(1 + z3)
2. Therefore, it can be written as

a(z) =
1

2
(1 + z1)

2(1 + z2)
2(1 + z3)

2q(z, w), (C.8)

whereq(z, w) is a Laurent polynomial with respect toz for a given weightw.

Now, we employ Theorems5.1and5.2 for the proof ofC1 continuity. A close inspec-

tion of the theorems reveals that, for the scheme to beC1 continuous, it is sufficient to show
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Figure C.7:A graph of||Dk||∞ with respect to the weight valuew.

that||DL
(i1,i2)||∞ < 1 for someL where

D(i1,i2)(z) = 2(1 + zi1)
−1(1 + zi2)

−1 a(z).

Becausea(z) is invariant of a permutation on indices, it is equivalent to show that

||DL
(1,1)|| < 1 and||DL

(1,2)|| < 1, where

D(1,1)(z) = 2(1 + z1)
−2 a(z),

D(1,2)(z) = 2(1 + z1)
−1(1 + z2)

−1 a(z),

respectively.

If we let ||Dk||∞ = max(i1,i2) ||Dk
(i1,i2)||∞, then whenw = 1

16
, the norms are

||D1||∞ = 1.75,

||D2||∞ ' 1.5313,

||D3||∞ ' 1.3523,

||D4||∞ ' 1.0914,

||D5||∞ ' 0.8188.
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FigureC.7shows||Dk||∞ as a function of the weightw. Generally,||DL||∞ < 1 when

L ≥ 5, at least forw ∈ (0, 0.1787]. By the theorems, we can guarantee that, whenw is

within the range, the subdivision scheme isC1 continuous over regular hexahedral meshes.

C.2.2 Continuity for Meshes of Non-Regular Topology

Non-regular topologies include cases in which a vertex or an edge has non-standard

connectivity. In regular hexahedral meshes, each vertex has a valence of six and each edge

is shared by four adjacent faces. When the mesh does not have these properties, we say that

mesh has anextraordinary vertexor extraordinary edge. Because non-regular topologies

become isolated from each other during the subdivision process, we can assume that we

have only a finite number of extraordinary cases in any given mesh.

For subdivision surface schemes, eigenanalysis is the standard technique to prove the

continuity of the scheme around non-regular topologies. In a surface scheme analysis, ex-

traordinary vertices are the only kinds of special cases that we have to consider. However,

solid scheme analysis involves not only the analysis of extraordinary vertices, but also that

of extraordinary edges. Unlike the relatively simple surface cases, both of the extraordi-

nary cases in solid schemes lack planar symmetry (in general). This situation prohibits a

direct application of spectral analysis techniques such as the Discrete Fourier Transform,

which is often employed in eigenanalysis to compute eigenvalues and eigenvectors of the

subdivision matrix symbolically (see [31]).

To overcome these difficulties, we have computed eigenvalues and eigenvectors of the

subdivision matrix around the extraordinary cases numerically. Obviously, it is not possible

to acquire the proof of the general cases in this way. We have selected over 20 extraordinary

cases and have analyzed their eigenvalues and eigenvectors to verify the necessary condi-

tions for the convergence of the scheme around the extraordinary cases. For the selected

cases we have also have numerically performed characteristic map analysis [84], which
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Figure C.8: A selection of non-regular topology meshes we analyzed in order to prove
numerically that our scheme isC1 continuous. The last four meshes show cases of extraor-
dinary edges.

is a well-understood technique for surface subdivision analysis. Reif [84] proved that the

regularity (one-to-one and non-singular aspect) of the characteristic maps guarantee theC1

continuity of a subdivision scheme around extraordinary cases in the limit.

For all the cases of extraordinary topology we examined, a local subdivision matrixS

of the scheme satisfied an eigenvalue property of

λ0 = 1 	 λ1 ≥ λ2 ≥ λ3 	 λ4, . . . , λn (C.9)

whereλi’s are the eigenvalues ofS in decreasing order. The eigenvalues of the selected

cases are listed in TablesC.1 andC.2. The weight for the scheme is given asw = 1
16

in

all cases. It is important to mention that we have 3 subdominant eigenvalues which are

strictly less than 1. In addition, FigureC.8 shows the control nets of the characteristic

map from each of the subdominant eigenvectors. It is important to note that, although the

extraordinary vertex cases we have chosen for each valence do not represent all the possible

configurations, they constitute a broad selection of the topologies one might encounter in

practice.
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Valence λ0 λ1 λ2 λ3 λ4

5 1 0.499420 0.454695 0.454695 0.352565
7 1 0.500000 0.484286 0.484286 0.404687
8 1 0.465107 0.458056 0.455922 0.447308
8 1 0.500000 0.470715 0.470715 0.461119
9 1 0.500000 0.495818 0.495818 0.439426
10 1 0.475022 0.475022 0.459298 0.445021
10 1 0.500000 0.500000 0.500000 0.432938
11 1 0.500000 0.494283 0.494283 0.470715
12 1 0.459298 0.459298 0.459298 0.445021
12 1 0.500000 0.490543 0.490543 0.484286
13 1 0.500000 0.498844 0.498844 0.472785
14 1 0.470722 0.470722 0.459298 0.445021
17 1 0.474916 0.462847 0.462847 0.448390
20 1 0.474916 0.463449 0.463449 0.452999
22 1 0.470597 0.459411 0.459411 0.457600
23 1 0.474916 0.465931 0.465931 0.465700

Table C.1:Eigenvalues for a selection of the extraordinary vertex cases.

Face Number λ0 λ1 λ2 λ3 λ4

5 1 0.5 0.484286 0.484286 0.404687
6 1 0.5 0.470715 0.470715 0.461119
7 1 0.5 0.495818 0.495818 0.439426
10 1 0.5 0.490543 0.490543 0.484286

Table C.2:Eigenvalues for a selection of the extraordinary edge cases.


