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Abstract

In this paper, we propose novel trivariate spline-based solid subdivision schemes over ar-
bitrary tetrahedral meshes in 3D space. The motivation of the proposed solid subdivision
schemes are to represent solid objects with complex topology and heterogeneous material
properties. The subdivision schemes are based on trivariate double-directional box splines
which serve as their basis functions. By devising a special quasi-regular structure compris-
ing tetrahedra and octahedra in 3D, we derive the subdivision rules for the regular cases.
The subdivision algorithm uses a certain directional choice of the diagonals in octahedra
to precisely evaluate the basis functions in the limit. We extend the subdivision rules to
cope with arbitrary tetrahedral meshes. To avoid the asymmetry of the original scheme, an
additional subdivision scheme based on averaging is presented. We prove theC1 continu-
ity of our subdivision scheme using existing mathematical techniques, such as the spectral
analysis of subdivision matrices and the characteristic map method. Both theoretical and
numerical results are presented in detail. Moveover, we support our hypothetical assump-
tions with empirical data which cover most of the practical cases. With the outline of the
implementation of the algorithm, we present some experimental modeling results using our
subdivision scheme, including solid models with non-trivial topology, volumetric objects
with heterogeneous materials, and simple numerical simulation on solid objects.
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1 Introduction

Solid modeling, especially representing volumetric objects have been an impor-
tant issue since the beginning of computer-aided design. Intuitively, representing
geometric models as solids are more natural approach, since real-world and man-
ufactured objects always have internal structure, unlike curves or surfaces that are
usually used to display objects in 2D computer screen. The contemporary solid
representations in solid modeling can be categorized as the followings: Implicit
function representations such as Constructive Solid Geometry (CSG) and blobby
models, boundary representations (B-reps), parametric representations, polyhedral
mesh representations and cell decomposition (voxels). Each representation has its
own benefits and limitations. In fact, the solid representations themselves have not
been changed fundamentally since the famous solid modeling survey by Requicha
and Voelcker (1982). However, the recent emergence of new technologies poses
new challenges to the existing solid representations. One such example is stere-
olithography, or 3D laying technology used in rapid prototyping process. This tech-
nology involves the thin-layering of 3D models, the injection process of special liq-
uid photopolymer, and the hardening process using the stereolithograph apparatus
(SLA). The technology can produce a real object of an arbitrary solid model using
the liquid plastic. Since the process requires the continuous layering of the inside
of 3D models, the ideal computer models for this process should be able to repre-
sent continuous varying material properties inside of the models, as well as bound-
aries. Functionally graded materials (FGM) (Ghosh et al., 1997; Miyamoto et al.,
1999) are another examples of the materials with continuously varying properties.
These type of materials, often referred as heterogeneous, or anisotropic materials
are emerging rapidly in many practical fields. On the contrary to the necessity in
these technologies, the underlying assumption of the most of the existing repre-
sentations, especially CSG and B-reps, is that the material is homogeneous. This
fact makes many existing solid representations very inadequate for representing the
new materials. Another challenge associated with new technologies are the growing
size of the volumetric data. When the first magnetic resonance imaging (MRI) sys-
tem was introduced, the resolution was very limited. However, the cutting edge 3
Tesla MRI machines (General Electric Company, 2004) can achieve the resolution
as high as1 mm3 per voxel. As a consequence, they can generate very large volu-
metric data in a short period of time. In addition, the data from the other sources,
such as the seismic data from geo-scientific survey, various medical images, and
the point clouds from 3D scanning machines increase the amounts and the com-
plexity of the volume data that should be dealt by the solid modeling techniques.
Moreover, new paradigms in shape design, such as the free-form design (McDon-
nell and Qin, 2000), the interactive design, the physics-based modeling, and the
integration of shape modeling and engineering analysis (Zagajac, 1996) introduce
new challenges to the existing solid representations. We can briefly summarize the
problems as follows:

2



(a) The growth of geometric and topological complexities
(b) The emergence of heterogeneous materials
(c) Vary large volumetric data
(d) New modeling paradigms.

To resolve these new issues in solid modeling, we propose new solid representa-
tion based on trivariate box splines and subdivision algorithms. We develop our
representation over arbitrary tetrahedral meshes in 3D. We introduce two new solid
subdivision schemes based on trivariate box splines. In addition, we provide math-
ematical analysis to guarantee a certain level of continuity. We begin with a brief
history on subdivision method, especially associated with solid modeling.

1.1 Subdivision Method

Subdivision method in computer graphics involves successive refinement of initial
control points to acquire smooth geometric objects in the limit. The one of the ear-
liest and the most simple subdivision methods related to computer graphics can
be found in Chaikin’s algorithm (Chaikin, 1974) to represent a spline curve. After
few years, Catmull and Clark (1978) and Doo and Sabin (1978) simultaneously
published remarkable papers regarding subdivision surfaces. Since then, much re-
search related to subdivision surfaces (Loop, 1987; Dyn et al., 1990; Hoppe et al.,
1994; Prautzsch and Umlauf, 1998; Kobbelt, 1996b,a; Levin, 1999) and their anal-
ysis (Prautzsch, 1985; Zorin et al., 1996; Zorin, 2000; Levin and Levin, 2003) has
been presented in the past decades. In fact, the subdivision surfaces have gained
popularity in computer graphics, especially in computer animation, mainly due to
the following advantages over the other surface representations:

(a) Uniformity of representation
(b) Multiresolution analysis and level-of-detail control
(c) Numerical efficiency and stability
(d) Handling of arbitrary topology or genus
(e) Simplicity in implementation
(f) Visual quality.

Despite of these advantages which can obviously benefit solid modeling as well as
surface case, most of the previous work has been focused on surfaces, rather than
solids. There have been few attempts to apply the subdivision method to solid rep-
resentation. One example is the work by MacCracken and Joy (1996), which gen-
eralizes tri-cubic B-splines to solids of arbitrary topology. In this approach, they
used the tensor-product of the Catmull-Clark surface scheme to represent solids.
Inherently, underlying meshes of their objects must be hexahedral. They employed
their scheme mainly for free-form deformation of existing triangular models. Later
on, Bajaj et al. (2002) further extended the scheme with the analysis based on nu-
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merical experiments. They approached the problem by separating the process into
multi-linear subdivision followed by a cell averaging operation. Therefore, they
call it MLCA or Multi-linear Cell Averaging scheme. Since the scheme makes no
assumption on the local topology of the hexahedral mesh, it can be directly applied
to non-manifold situations. The continuity analysis that they represented are mostly
based on numerical experiments. Linsen et al. (2002) proposed4

√
2 subdivision to

represent time-varying volume data in hierarchical fashion. This four-dimensional
subdivision scheme provides both spatial and temporal scalability. Also, they used
quadri-linear B-spline wavelet lifting scheme based on the4

√
2 subdivision for high-

quality data approximation. Pascucci (2002)’s recent work on high dimensional
subdivision scheme suggested interesting cell-split of arbitrary polyhedra to slow
the increase of cells during the subdivision process. It introduces specialdiamond
cells during the process, which makes it hard to analyze. Chang et al. (2002, 2003)
proposed an approximate and interpolatory schemes based on tetrahedral meshes.
Unlike the other solid subdivision schemes, their approaches employ non-tensor-
product trivariate functions, which enable the usage of arbitrary tetrahedral meshes,
instead of hexahedral meshes. The most recent subdivision scheme proposed by
Schaefer et al. (2004) is based on the quasi-regular structure that has been pro-
posed by Chang et al. (2002) and their paper contains detailed analysis on special
cases, especially, the face-to-face case, using the joint spectral analysis by Levin
and Levin (2003). One shortfall of their approach is lack of explicit basis func-
tions even in regular cases, since it is not based on any splines unlike Chang et al.’s
approach.

1.2 Contribution

In this paper, we propose new solid subdivision schemes to address the issues en-
tailed by technological advances. Our contribution in this research can be summa-
rized as the followings:

• We propose quasi-regular structure based on tetrahedra and octahedra. We prove
that the proposed mesh satisfies the properties that are desired for the subdi-
vision method. This provides the foundation of the derivation of subdivision
solid schemes over arbitrary tetrahedral meshes. Tetrahedral meshes provide our
schemes simplicity and flexibility that can resolve the geometric and topological
complexities.

• We derive new approximate solid subdivision schemes from the recursive prop-
erty of box splines. Based on a particular class of trivariate box splines, we
achieve high smoothness without the limitation of tensor-product subdivision
schemes. We generalize the schemes to arbitrary tetrahedral meshes in 3D. The
schemes intrinsically share the advantages of the subdivision methods, such as
the mutiresolution structure and level-of-detail control which are very desirable
for large volumetric data processing.
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• We employ current mathematical tools for the convergence and continuity anal-
ysis of the schemes. We discuss the new challenges associated with the solid
scheme analysis and apply the analysis techniques to a certain extend. The empir-
ical data support the continuous property of objects represented by our schemes.
The continuity analysis guarantees that our schemes are appropriate to represent
heterogeneous solid objects, especially continuously varying materials.

We also address the key issues in implementation and offer some experimental
examples, such as solid models with non-trivial topology, volumetric objects het-
erogeneous materials, and simple numerical simulation on solid objects.

2 Box Splines Revisited

There has been much study on box splines since the early days of computer-aided
design. We briefly discuss the general definition and properties of the box splines
in this section for reminder, which are essential for the development of new sub-
division schemes. Furthermore, we introduce the concept of generating functions
and discrete convolution.

2.1 Definition

There are several ways to define the box spline. One constructive way is by consid-
ering a projective image of then-dimensional unit cube, orn-cube, tom-dimensional
space with respect to anm×n projection matrixΞ (Boehm, 1984). We will follow
the notations and the definition inthebox spline book (de Boor et al., 1993) by de
Boor et al.Analytically, we define the box splineMΞ associated with the matrixΞ
as a distribution given by:

MΞ : ϕ 7→ 〈MΞ, ϕ〉 :=
∫

ϕ(Ξt)dt, (2.1)

whereϕ ∈ C(Rm) and = [0, 1)n, the half-open unitn-cube. By decomposing
Rn = (ker Ξ)

⊕
(ker Ξ)⊥ and applying Fubini’s Theorem, we can derive that the

distribution can be expressed as:

〈MΞ, ϕ〉 :=
∫
ran Ξ

ϕ(x) voln−d

(
Ξ−1{x} ∩

)
dx/| det Ξ|, (2.2)

whereran Ξ = (ker Ξ)⊥ andd = dim(ran Ξ). We identify theMΞ with a function:

MΞ(x) = voln−d

(
Ξ−1{x} ∩

)
/| det Ξ|, (2.3)

whenx ∈ ran Ξ. At each pointx, the valueMΞ(x) is defined by the volume of the
cross-section area ofwith Ξ−1{x}, divided by the volume of the projected image
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of a unit volume inran Ξ. This intrinsic interpretation is important in understanding
the subdivision process. Finally, a geometric objectS in Rm can be represented by
the sum of the box splines:

S(x) =
∑
i∈Zm

piMΞ(x− i), (2.4)

wherepi are initial control points inRm.

The analytic definition leads us to a very useful inductive definition. WhenΞ is
invertible (i.e.n = m = d), it is clear thatMΞ is the normalized characteristic
function ofΞ :

MΞ =
1

| det Ξ|
χΞ . (2.5)

In addition, if Ξ ∪ ζ is a matrix formed by the addition of the columnζ ∈ Rm to
the matrixΞ, the box splineMΞ∪ζ is given by the convolution equation:

MΞ∪ζ(x) =
∫ 1

0
MΞ(x− tζ)dt, (2.6)

or simply,

MΞ∪ζ = MΞ ∗Mζ . (2.7)

2.2 Properties

Generally, the box spline satisfy the following properties:

(a) Positive definition: MΞ ≥ 0 and
∫
ran Ξ MΞ = 1.

(b) Partition of unity: f(x) =
∑

i∈Zm MΞ(x− i) = 1.
(c) Piecewise polynomial: MΞ is a piecewise polynomial of degreen−m.
(d) Continuity: MΞ is a Cn−ñ−2 function, whereñ is the maximal number of

columns ofΞ that does not spanRm.

We refer the readers who are interested in the proofs of the properties to the box
spline book (de Boor et al., 1993) by de Boor et al.. In addition to the properties,
a box spline can be expressed by linear combinations of integer shifts of the box
splines with the support of a half-size. It can be formulated as:

MΞ(x) =
∑
i∈Zm

siMΞ(2x− i). (2.8)

Thesi ∈ R is called asubdivisioncoefficient, and the formula is called asubdivi-
sion algorithm.
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The simplest case is whenΞ = E, them × m identity matrix. It is obvious that
ME = χE , and it has a simple subdivision formula:

ME(x) =
∑
i∈Zm

ME(2x− i). (2.9)

We can easily derive subdivision formulae for the other box splines by using the
convolution equation (2.6) and the following theorem.

Theorem 2.1.SupposeMΞ has a subdivision formulaMΞ =
∑

i siMΞ(2x− i) and
Φ = Ξ ∪ ζ, whereζ is a column vector inZm. ThenMΦ satisfies the following
subdivision formula:

MΦ(x) =
1

2

∑
i

(si + si−ζ)MΦ(2x− i). (2.10)

Proof. By the convolution formula (2.6),

MΦ(x) =
∫ 1

0
MΞ(x− tζ)dt

=
∫ 1

0

∑
i

siMΞ(2(x− tζ)− i)dt

=
1

2

∑
i

si

∫ 2

0
MΞ(2x− i− uζ)du

=
1

2

∑
i

[
si

∫ 1

0
MΞ(2x− i− uζ)du + si

∫ 2

1
MΞ(2x− i− uζ)du

]

=
1

2

∑
i

[
siMΦ(2x− i) + si

∫ 1

0
MΞ(2x− i− ζ − uζ)du

]

=
1

2

∑
i

[
siMΦ(2x− i) + siMΦ(2x− i− ζ)

]
=

1

2

∑
i

(si + si−ζ)MΦ(2x− i).

Even though it is possible to derive the subdivision algorithm for a particular box
spline by Theorem 2.1, it is more convenient to inspect the coefficients themselves,
as a discrete convolution (Warren and Weimer, 2001). We explain the method in
the next section.
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2.3 Generating Functions

A subdivision algorithm can be considered as the discrete convolution among poly-
nomials (Warren and Weimer, 2001; Dyn and Micchelli, 1990). Once the relation
between the subdivision coefficients and the polynomials (usually calledgenerating
function) are established, the subdivision formula can be acquired systematically.
Here, we briefly discuss the most important property of the generating function
method related to the subdivision process.

We associate a subdivision formula with a multivariate polynomial. SupposeMΞ

has a subdivision formulaMΞ =
∑

i siMΞ(2 · −i), then we assign:

fΞ(z) =
∑
i∈Zm

siz
i, (2.11)

as its generating function, wherez = (z1, · · · , zm) andzi = (z1
i1 , . . . , zm

im). It
is clear to see that one can derive the analog of Theorem 2.1 for the generating
function, as following:

Corollary 2.2. SupposeMΞ has a subdivision formula associated with a generat-
ing functionfΞ(z) =

∑
i∈Zm siz

i. If Φ = Ξ∪ ζ, thenMΦ has a subdivision formula
whose generating function is:

fΦ(z) =
1

2

∑
i∈Zm

(si + si−ζ)z
i. (2.12)

The result of Corollary 2.2 can be rewritten asfΦ(z) = 1
2
(1+zζ)fΞ(z). By applying

Corollary 2.2 recursively, we can acquire the following general formula for the box
splines.

Corollary 2.3. For any box splineMΞ represented by the directional matrixΞ, its
generating functionfΞ can be written as:

fΞ(z) =
1

2d−k

∏
ζ

(1 + zζ). (2.13)

Here,d is the number of columns in the matrixΞ andζ is each column vector ofΞ.
The proofs are straightforward, therefore they are omitted. For further discussion on
generation functions, we refer readers to the book by Warren and Weimer (2001).
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3 Derivation of Subdivision Scheme

We have defined general box splines and demonstrated their properties in the pre-
vious section. Moreover, we have established a subdivision algorithm for the box
splines, which leads us to the derivation of subdivision schemes. In this section, we
focus on a particular type of box splines of our interest, namely, thedouble direc-
tional box splines. We discuss the subdivision rules to evaluate the box splines and
extend them into general situations, where a mesh consists of arbitrary tetrahedra in
3D. In Appendix A, we propose an additional subdivision scheme based on spatial
averaging to avoid asymmetry inherited in the original subdivision scheme.

3.1 Double Directional Box Splines

We choosedouble directionalbox splines and their variations to be our choice of
the spline representation in regular cases. First, we begin with considering a piece-
wise linear box spline function. SupposeΞ1 = E ∪ δ, whereδ = [1, · · · , 1] ∈ Rm.
Then,MΞ1 forms a piecewise linear function overRm. The support of the spline
function is the form of two unit squares, orm-cubes, sharing one vertex, with ad-
ditional edges that join the corresponding vertices in each cube. Figure 1 shows
the supports of the piecewise linear box splines form = 1, 2, and3,respectively.
The subdivision algorithm for the piecewise linear box splines can be derived in-
tuitively. As shown in 2, eachn-cube ⊂ Rn can be split into2n sub-cubes. The
projected images of the sub-cubes byΞ1 constitute the piecewise linear box splines
with half-support. This procedure admits a simple subdivision algorithm for each
dimension.

(a) (b) (c)

Fig. 1. The supports of the piecewise linear box splines.

The double directional box spline can be understood as a projection of the unit
2(m + 1)-cube intoRm, as previously mentioned. The spline can be defined by
the directional matrixΞ2 = Ξ1 ∪ Ξ1. We use the union operation to represent
the conjoined matrix. Since the matrixΞ2 projects a pair of edges into the same
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place inRm, the supports of the double directional box splines are the exactly same
shapes as those of the piecewise linear box splines. Note that, form = 1 and2, the
supports of the box splines are alwaysm-simplex,i.e., line segments and triangles.
Moreover, the support of the 2D case comprises a regularly structured mesh in
R2. Since our objective is to find a subdivision algorithm over arbitrary tetrahedral
meshes in 3D, these results seem promising. However, as we will discuss in the
next section, this is non-trivial question inR3.

(c) (d)(b)(a)

Fig. 2. An intuitive subdivision of the piecewise linear box splines.

3.2 Regular Subdivision Meshes

During any subdivision process, we introduce new vertices associated existing ge-
ometric elements – vertices, edges, faces, and cells for solid cases – using the in-
formation about their neighbors and the weight values derived from the subdivision
scheme. The neighbor information is acquired from the connectivity among the
vertices, which is given by the form ofsubdivision meshes. Generally speaking,
subdivision meshes are undirected graphs inRm. The subdivision meshes are es-
sential in any subdivision scheme. Not only they provide the connectivity informa-
tion during the process, but also they are deeply connected with the derivation and
the generalization of the scheme. In particular, it is desired, but not necessary, for
any subdivision meshes of stationary subdivision schemes to satisfy the following
properties:

(a) Cell decomposition: A subdivision mesh consists of polygonal or polyhedral
cells of dimensionm in Rm.

(b) Self-congruency: Each cell, if divided by a proper split method, yields sub-
cells which are congruent to the parent cell.

It is possible that the mesh does not yield a valid polyhedral decomposition inRm.
However, it becomes complicated to generalize the subdivision schemes to arbitrary
meshes. In the ideal case, the subdivision algorithm will be infinitely repeated to
acquire the limit object. If we consider the infinite splits of each cell, it is obvious
that any cells that satisfy the self-congruency can tile the entireRm space. On the
other hand, it is trivial that a part of any regular structured mesh, or atiling in
Rm satisfies the properties. The understanding of regular structured meshes inRm
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is essential to understand the subdivision process. As mentioned in the previous
section, the support of the box splines in the 2D case provides a part of such regular
mesh. In particular, this is a regular triangle mesh with the valence 6. For the 3D
case, the boundary of the support of the box splines (Figure 1(c)) forms a rhombic
dodecahedron, which is a known tiling polyhedron inR3. However, if you consider
the other edges, the support does not admit any proper polyhedral decomposition.

To continue investigating structured meshes in high dimensional spaces, we adopt
Schl̈afli symbol to represent regular structures (Coxeter, 1963). The Schläfli symbol
is defined as the following:

Definition 3.1. The Schl̈afli symbol{p} defines a regularp-gon. The Schl̈afli sym-
bol {p, q} represents a regular structured mesh inR2, such that each cell is the regu-
lar p-gon and there areq of them at each vertex. The Schläfli symbol{p

q
} represents

a dual quasi-regular structured mesh of{p, q}. In 3D space, the Schläfli symbol
{p, q, r} defines a regular structured mesh inR3, such that each cell is{p, q}, i.e.it
is a regular polytope with the faces of the regularp-gon and there areq of them
at each vertex, and there arer of them surrounding each edge. The same analogue
holds for higher dimensional structures.

By definition, any regular structure consists of a single type of a polyhedron. In
addition, there exist structures that are less regular, such asquasi-, or semi-regular
structures. To understandquasi-regularstructure, we first need to introducevertex
figures. The vertex figure of a vertex of a structured mesh is defined as a polyhedron
whose vertices are the mid-points of all the edges that emanate from the given
vertex. A polyhedron is called quasi-regular, if its faces are regular and the vertex
figure is cyclic and equiangular. A mesh is called quasi-regular if its cells are regular
while its vertex figures are quasi-regular.

The Schl̈afli symbols offer a convenient way to deal with structured meshes. For
example, the triangular structured mesh inR2 by the 2D support (Figure 1(b)) can
be written as{3, 6} by the Schl̈afli symbol. By examining the properties of the
structured meshes using the Schläfli symbols, one can prove that for everym ≥ 2,
{4, 3m−2, 4} forms a regular structured mesh inRm. In fact, this is nothing more
than the mesh equivalent to the lattice structureZm. Unfortunately, it is the only
regular structure form = 3 andm ≥ 5. Form = 4, there exist two more regular
structured meshes,{3, 3, 4, 3} and the reciprocal of it,{3, 4, 3, 3}.

Finding structured meshes in 3D involving tetrahedra is more difficult than the tri-
angle case. We have showed that the only regular structure inR3 is {4, 3, 4}. Even
without the Schl̈afli symbols, the problems are apparent. Figure 3 illustrates some
examples of splits of a tetrahedron. As we can see, none of them yields congruent
sub-tetrahedra. In fact, there is no tetrahedral split that produces congruent sub-
cells. Moreover, the two splits except the edge-split produce slimmer tetrahedra
and increase the valences of vertices. These behaviors are inappropriate for subdi-
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(b)(a) (c)

Fig. 3. Examples of splits of a tetrahedron. (a) The edge-split. (b) The cell-centroid-split.
(c) The face-centroid-split.

vision schemes. Actually, the edge-split does yield 4 congruent tetrahedra (Figure
4(a)). However, it generates an octahedra in the middle. If we keep splitting the
octahedron by the same method (Figure 4(b)) and repeat the process, we result in
the structure calledoctet-truss(Figure 4(c)). In fact, this is the only quasi-regular
structure inR3, represented by the Schläfli symbol{3, 3

4
}. As the symbol suggests,

it consists of two types of polyhedra,i.e.tetrahedra ({3, 3}) and octahedra ({3, 4}).

(b)(a)

(c)

Fig. 4. The octet-truss structure. (a) The edge-split of a tetrahedron generates 4 tetrahe-
dra and 1 octahedron. (b) The edge-split of an octahedron generates 8 tetrahedra and 6
octahedra. (c) By combining these two, we form a quasi-regular structured mesh, called
octet-truss.

It is easy to confirm that the octet-truss structured mesh satisfies the subdivision
mesh properties. In the rest of the paper, the octet-truss structured mesh will serve
as our underlying mesh for the subdivision scheme. This is no arbitrary choice, as
illustrated in Figure 5. From the support of the trivariate piecewise linear box spline
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by Ξ1 (Figure 5(a)), we can add minimal number of edges to provide a proper
polyhedral decomposition (Figure 5). An easy one-to-one correspondence with a
part of the octet-truss mesh can be easily established by the inspection of Figure 6.
Since the support of the trivariate double directional box spline byΞ2 is the same
as that of the piecewise linear case, there is no difficulty to derive the subdivision
rules for the trivariate double directional box spline over the structured mesh.
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3.3 Generating Function over Subdivision Mashes

We are now concerned in deriving the subdivision rules for the trivariate box spline.
There is a systematical way to derive the subdivision rules for the regular cases from
the coefficients of generating functions. We proceed with the following steps:

(a) Compute the generating function of the subdivision algorithm.
(b) Associate the acquired subdivision coefficients from the generating function

with Zm by the power of their polynomial terms. For instance, if the coefficient
ci is for the termzi = (z1

i1 , · · · , zm
im), theci is assigned to the lattice point

i = (i1, · · · , im).
(c) Index a part of the subdivision mesh properly so that we can establish the one-

to-one correspondence between the non-zero coefficients and the mesh ver-
tices.

(d) Extract the subdivision masks for the vertices, edges, and cells if necessary.
(e) Reduce the number of the masks by considering rotational symmetry.

We start with the bivariate double directional box spline as an example. By applying
the directional matrixΞ = {(1, 0), (0, 1), (1, 1), (1, 0), (0, 1), (1, 1)} to Corollary
2.3, we compute the generating function:

fΞ(z1, z2) =
1

16
(1 + z1)

2(1 + z2)
2(1 + z1z2)

2. (3.1)

Its coefficients can be properly embedded in the 2-ring vertex neighbor of the{3, 6}
structure (Figure 2(d)). From the equation (3.1), we derive the subdivision coeffi-
cients and place them on the part ofZ2 as shown in Figure 7(a). The one-to-one
correspondence betweenZ2 and the{3, 6} structure is canonical with the addition
of the diagonal edges. Now we can extract the subdivision masks. For vertex cases,
we consider the center vertex as our vertex point. Since we perform the subdivision
using the edge-split, the edges of our masks should have the size of two grids in
each direction. Therefore, we can extract the subdivision mask for regular vertices,
shown in Figure 7(b). For edge cases, we consider the center as newly introduced
edge point. Then, there are 3 choices of the length 2 edges and the associated masks,
shown in Figure 7(c). Since all these masks are identical upon the rotation of the
degree2π

3
, we can reduce them into a single edge subdivision mask. In fact, the re-

sulting rules are those of the Loop’s scheme (Loop, 1987), since the Loop’s scheme
is based on the bivariate box spline.

The same procedure can be applied to the trivariate box spline case. By applying
Corollary 2.3 to the directional matrixΞ2 in the 3D case, we acquire the following
generating function:

fΞ2(z1, z2, z3) =
1

32
(1 + z1)

2(1 + z2)
2(1 + z3)

2(1 + z1z2z3)
2. (3.2)
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Fig. 7. (a) The subdivision coefficients of the Loop’s scheme are embedded in the part of
the{3, 6} regular structured mesh. (b) and (c) The extracted vertex and edge masks. All the
values are to be multiplied by116 .

The coefficient of each polynomial termzi1
1 zi2

2 zi3
3 represents the weight value for

the subdivision algorithm at(i1, i2, i3) in Z3. As explained in the previous sec-
tion, by adding additional edges, we can establish the one-to-one correspondence
betweenZ3 and the octet-truss. The coefficients of the formula (3.2) can be embed-
ded in the part ofZ3 corresponding to the 2-ring vertex neighbor of the octet-truss,
as shown in Figure 8. The figure illustrates each layers ofZ3 throughz-axis. One
must be cautious that there are edges between each layers as well as vertices with
the same layer. In fact, all diagonals in Figure 8 represent the edges between lay-
ers, except the blue diagonals in the third layers. The mask extraction processes are
shown in detail in Figure 9, Figure 10, and Figure 11. We follow the same steps as
the 2D case, except that we now utilize the existence of the edges between layers.
Unlike the 2D case, we have two types of the edge masks which are not identical
by rotation. The edge masks (a-d) in Figure 10 have 6 neighbors in addition to each
end point of the edge, whereas the edge mask (e-f) in Figure 10 have 4 neighbors.
Each edge mask in (a-d) and in (e-f) is identified by rotation. Therefore, we have
one vertex mask, two edge mask, and one cell mask for the subdivision algorithm.
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Fig. 8. The subdivision coefficients of the generating function are embedded in the part of
the octet-truss regular structured mesh. All the values are to be multiplied by1

32 . Since it is
3D mesh, each layer of the mesh is displayed separately. The bold circled vertex indicates
the center of each layer.

This asymmetry in the edge masks occurs due to the unified direction choice of
the diagonal in each octahedron, which are shown as blue edges in the third layers.
Note that the original octet-truss mesh and its subdivision do not require the choice
of the diagonal inside the octahedral cells. However, during the assignment of the
subdivision coefficients onto the mesh, we need to choose one particular direction
defined by one of the octahedral diagonals, because of the spherical asymmetry of
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Fig. 9. The vertex mask for the box-spline based subdivision algorithm. All the values are
to be multiplied by 1

32 .

(a) (b)

(c) (d)

(e) (f)

Fig. 10. The edge masks for the box-spline based subdivision algorithm. The small circles
at the center represent new edge point. For (a-d), the subdivision coefficients are2

32 at the
white circles and10

32 at the black circles. For (e-f), the values are4
32 and 8

32 , respectively.

4 8

8

4

4 4

Fig. 11. The cell masks for the box-spline based subdivision scheme. All the values are to
be multiplied by 1

32 . The small circle at the center represents new cell point.

the projected image of the 8-cube in 3D space.

We call this choice of the octahedral diagonal as themajor diagonal. We have to
choose the diagonal in such way that for two adjacent octahedra sharing an edge,
the major diagonals are parallel to each other if the mesh is in canonical position.
More precisely:

Definition 3.2. For each octahedral cello = [xi, ...,xi+5] that comprises the mesh,
we choose one pair of vertices{xj1 ,xj2} which are not adjacent. The pair is called
the major diagonaland is denoted byµ(o) = [xj1 ,xj2 ]. The major diagonal of a
tetrahedral cell refers to the choice of major diagonal of the octahedron that occurs
during the subdivision.

We call the choice of the major diagonals isproper if and only if, for two adjacent
octahedrao1 = [x1, ... ,x6] ando2 = [y1, ... ,y6], each shared edge[xi1 ,xi2 ] =
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[yj1 ,yj2 ] ⊂ o1 ∩ o2 satisfies one of the following properties:

(a) xi1 ∈ µ(o1) andxi2 ∈ µ(o2),
(b) xi2 ∈ µ(o1) andxi1 ∈ µ(o2),
(c) Bothxi1 andxi2 do not belong to any ofµ(oi), i = 1, 2.

During the subdivision, sub-cells inherit the directions of the major diagonals from
their parent cells. For a tetrahedral cell, the major diagonal direction is required to
be stored because an octahedron is introduced during the subdivision. The proper
choice of the major diagonals can be done easily in the regular cases. However, in
general, the choice of the major diagonals causes a problem in the implementation
of the subdivision algorithm. We will discuss more about the implementation issues
in Section 5.

3.4 Regular Subdivision Rules

Since we have identified the subdivision masks, it is relatively easy to derive the
regular subdivision rules for the subdivision algorithm. The rules reduce into one
vertex rule, two edge rules and one cell rule. We begin with defining the neighbor
set functionρ(·) of a vertex or an edge. We emphasize that the adjacency is defined
by the existence of an edge or a major diagonal, not a cell. The formal definition of
ρ(·) is as follows:

Definition 3.3. For each vertexxi, we sayxj ∈ ρ(xi) if and only if there exists an
edgee = [xi,xj] or a major diagonal of an octahedral cell,µ(o) = [xi,xj].

For each edgeei = [xi,xi+1], we sayxj ∈ ρ(ei) if and only if there exists an edge
e = [xk,xj] or a major diagonal of an octahedral cell,µ(o) = [xk,xj] for both
k = 1, 2.

3.4.1 Vertex Rule

Each regular vertexxi has the valence of 14,i.e.|ρ(xi)| = 14. It is shared by 6
octahedra and 8 tetrahedra. However, because of theproperchoice of the major di-
agonals and the definition of neighbors by Definition 3.3, we have only 14 adjacent
vertices to be counted. Therefore, we introduce new vertex pointvnew by:

vnew =
1

32

{
18xi +

∑
xj∈ρ(xi)

xj

}
. (3.3)
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3.4.2 Edge Rules

Each edgeei = [xi,xi+1] is shared by 2 octahedra and 2 tetrahedra. According
to the position of the major diagonals of the octahedra, there are two types of the
regular edge rules to compute new edge pointenew (Figure 12(b)). If|ρ(ei)| = 6
then,

enew =
1

32

{
10(xi + xi+1) + 2

∑
xj∈ρ(ei)

xj

}
. (3.4)

If |ρ(ei)| = 4 then,

enew =
1

32

{
8(xi + xi+1) + 4

∑
xj∈ρ(ei)

xj

}
. (3.5)

3.4.3 Cell Rule

For each octahedral cello = [xi0 , ...,xi+5] with the major diagonalµ(o) = [xj1 ,xj2 ],
the new cell pointcnew is computed by:

cnew =
1

32

{
4(xi0 + · · ·+ xi+5) + 4(xj1 + xj2)

}
. (3.6)

(b)(a) (c)

: 18 / 32

: 1 / 32

: 2 / 32

: 10 / 32

: 4 / 32

: 8 / 32
: 4 / 32

: 8 / 32

Fig. 12. The regular subdivision rules. The red dotted edges indicate the major diagonals.

3.5 Extraordinary Subdivision Rules

From the regular subdivision rules that are defined over the structured meshes based
on the octet-truss, we extend our scheme to arbitrary tetrahedral meshes. Unlike
the octet-truss, where each vertex and edge have a regular number of adjacent ver-
tices, we can have arbitrary number of vertices adjacent to vertices and edges in
the tetrahedral meshes. In solid subdivision, the extraordinary cases include two
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different types of irregularity, namely the extraordinary vertices and the extraordi-
nary edges. However, once subdivided, the sub-structure inside each cell becomes
regular again. Therefore, the extraordinary topology is limited to the initial connec-
tivity.

The following generalization of the subdivision rules are simply based on weight
averaging. We divide the subdivision coefficients for the 1-ring neighbor vertices by
the valence. They require analysis to guarantee a certain level of continuity across
the extraordinary topologies. The analysis for each case is described in Section 4.

3.5.1 Vertex Rule

Similar to subdivision surfaces, an arbitrary tetrahedral mesh can contain extraor-
dinary vertices as shown in Figure 13(a). Suppose the valence of the vertexx is k
(|ρ(xi)| = k), then our vertex rule can be rewritten as:

vnew =
9

16
xi +

7

16k

∑
xj∈ρ(xi)

xj. (3.7)

3.5.2 Edge Rules

The extraordinary edge case is not present in subdivision surfaces. Suppose the
edgee = [xi,xi+1] is surrounded byk vertices (|ρ(ei)| = k), then the edge rule is
modified as follows:

enew =
5

16
(xi + xi+1) +

3

8k

∑
xj∈ρ(ei)

xj. (3.8)
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Fig. 13. The extraordinary subdivision rules.
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3.6 Boundary Representation

Solid objects always have boundaries in 3D space. Therefore, we need to employ
special rules to represent the boundaries of the solid objects represented by our
subdivision algorithm. We simply use the modified Loop’s scheme (Figure 14) to
represent the boundaries. Because of the small sizes of our subdivision masks, there
is no apparent problem between the transition area of the boundary and the interior.
Since the Loop’s scheme is based on the bivariate double directional box spline, the
choice seems appropriate. It should be mentioned that the boundary representation
is solely chosen by the visual quality. We have made no attempt to analyze the
continuity between the boundary and interior of the solid objects.

1 1

(b)

1 1

1 1

10

2 2

6

6

(a)

c

c

c

c

c

c
1-kc

Fig. 14. The boundary subdivision rules based on the Loop’s scheme. (a) The rules for
the regular meshes. The values are to be multiplied by1

16 . (b) The rule for extraordinary
vertices.c can be chosen as38k or 1

k (5
8 − (3

8 + 1
4 cos 2π

k )2).

4 Analysis of Arbitrary Topology

By definition, our scheme isC2-continuous on the octet-truss structured meshes,
since it evaluates the trivariate double-directional box spline functions defined on
each regular vertex. Figure 15 shows a single basis function evaluated by our sub-
division algorithm on the regular mesh. Figure 15(a) shows the density of the basis
function cut by thex-y plane. Figure 15(b) is the iso-contour lines of the same
function. Since we choose the direction of the liney = x as our major diagonal di-
rection, the shape is symmetry along the line. Figure 15(c) is the function value and
the directional derivative∂f

∂x
along thex-axis. The plot data are from the 4th level

of subdivision. The derivative is acquired by the central differences of the discrete
data.

The convergence and the continuity across the extraordinary topology requires
separate analysis. Many researchers have been working on the subdivision anal-
ysis near extraordinary topology, especially for the subdivision surfaces. For in-
stance, Dyn and Micchelli (1990); Dyn et al. (1991, 1992), Micchelli and Prautzsch
(1987), Prautzsch (1985); Prautzsch and Umlauf (1998); Prautzsch and Reif (1997);
Prautzsch (1998); Prautzsch and Reif (1999), Reif (1995b,a), Zorin et al. (1996);
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Fig. 15. The basis function of the subdivision algorithm on the regular mesh. (a) The density
values of the basis function over thex-y plane. (b) The iso-contour lines of the density. (c)
The function value and its directional derivative along thex-axis. The derivative values
have been re-scaled.

Zorin (1997, 2000); Zorin and Kristjansson (2002), and most recently Levin and
Levin (2003) investigated the sufficient and necessary conditions of the conver-
gence and theC1-continuity for various subdivision curves and surfaces. Two ma-
jor techniques of such analysis are the spectral analysis of subdivision matrices
and the characteristic map method by Reif (1995b). Unfortunately, these analysis
techniques for subdivision surfaces are not fully extended to the solid subdivision
algorithms and there is no known method specially developed for the solid schemes.
Hence, we approach this situation as follows:

(a) Categorize the extraordinary cases for the solid subdivision algorithm.
(b) For each case, compute the subdivision matrix.
(c) Perform the spectral analysis of the subdivision matrix numerically.
(d) Construct the characteristic map and confirm the satisfactory conditions for the

C1-continuity through empirical data.

Even though these steps do not guarantee the continuity of the subdivision algo-
rithm on every possible case, they suggest a strong evidence that our subdivision
algorithm is indeedC1-continuous for many situations, especially that can be oc-
curred in real-world.

Since our subdivision algorithm is based only on stationary linear combinations, we
can describe the subdivision process of each step as a simple matrix computation:

pj+1 = Spj, (4.1)

wherepj = [pj
0, ...,p

j
N ]T is a matrix of control points aroundpj

0 at the subdi-
vision levelj. The numberN of the control points is determined so that the linear
system is invariant. In our case, we need 2 rings of vertex neighbors.
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Fig. 16. The invariant neighborhood of an extraordinary vertex and their indices.

4.1 Subdivision Matrix

We begin the analysis with computing the subdivision matrix for each extraordi-
nary case. We first examine the case of extraordinary vertices. This case involves
a vertex withk vertices adjacent to it. As shown in Figure 16, we can establish a
correspondence between thek adjacent vertices andk vertices on the sphere cen-
tered by the extraordinary vertexpj

0. By considering different triangulations of
thek vertices, we can understand the different configurations of the extraordinary
vertex subdivision matrix. Each triangle is associated with the tetrahedral area that
is surrounding the extraordinary vertex. Because we need 2-ring vertex neighbors
to acquire the invariant system, we subdivide each tetrahedron once, as illustrated
in Figure 16. Using the Poincaré formula and the relation between triangular faces
and edges:

v − e + f = 2,

2e = 3f,

we can deduce that the number of such tetrahedral area surrounding the vertex is
f = 2(k − 2). In addition, the 1-ring vertex neighbor containsk vertices and each
subdivided triangular faces on the 2-ring vertex neighbor contains 6 vertices, 3 of
which are shared by each edge. Therefore, the actual numberN of the vertices
including the extraordinary vertex to form the invariant system is:

N = 1 + k + 6f − 3e + k

= 1 + k + 6(2k − 4)− 3(3k − 6) + k = 5k − 5.

Hence, we can conclude that the size of the subdivision matrix for each extraor-
dinary vertex with the valencek is N × N whereN = 5k − 5. With a proper
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reordering of the indexes of the vertices, the matrixSv can be written as:

Sv =

M O

A B

 ,

whereM is a (k + 1) × (k + 1) matrix andO is the square zero matrix with the
size of4k−6. We use the spherical coordinates to define an order between vertices.
It is important to know that the dominant and the subdominant eigenvalues of the
Sv, especially the first 5 largest eigenvalues, are identical to those of the submatrix
M. Since the matrixM can be easily acquired by thek 1-ring vertex neighbors of
the vertexpj

0, we can reduce the amounts of the computations during the analysis
process significantly. It is worth mentioning that, unlike the surface cases, there
exist several different configurations of neighboring vertices for each valencek.
In fact, it is related to the planar triangulation ofk points and the recent result
by Santos and Seidel (2003) suggests that the upper bound for the number of the
configurations isO(59nn−6) for largen. Since each configuration yields a unique
subdivision matrix, it is difficult to compute the eigensystem systematically.

The extraordinary edge with the valencek is surrounded byk tetrahedra sharing
the edgee = [pj

0,p
j
2], as shown in Figure 17. Again, we subdivide each tetrahe-

dron once to make the neighbor invariant. It is easy to deduce that the size of the
subdivision matrixSe is (4k + 3) × (4k + 3). Similar to the extraordinary vertex
subdivision matrix, the matrixSe can be described as:

Se =

L O

P Q

 ,

with the proper index reordering. In the edge case,L is a(2k+3)×(2k+3) matrix. It
consists of the subdivision coefficients of the 1-ring neighbors of the extraordinary
edge. Once more, the dominant and subdominant eigenvalues of the subdivision
matrixSe can be acquired from the submatrixL. The subdivision matrixSe and its
eigensystem can differ by the choice of the major diagonals. It will be discussed in
the next section.

4.2 Prerequisites

There is a question to be answered before continuing the spectral analysis. It is the
question about the face-to-face case between the tetrahedral cells. Even though a
tetrahedron always faces with an octahedron and vice versa in the regular octet-truss
meshes, this property does not hold in general. Especially, an arbitrary tetrahedral
mesh does not satisfy it at all. Once subdivided, the interior of each tetrahedron
becomes the regular octet-truss structure. However, the faces shared by two tetra-
hedra initially given by the mesh remain the same during the subdivision processes.
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Fig. 17. The invariant neighborhood of an extraordinary edge and their indices.

In fact, in the paper (Schaefer et al., 2004), Schaefer et al. resolved the issue by
applying the joint spectral radius test by Levin and Levin (2003). Our situation is
slightly different, since their rules are based on the cell-averaging, while ours are
based on the vertex and edge-averaging. Moreover, the choice of the major diago-
nals plays a major role to keep the structures in the shared face regular.

We have taken a simpler approach to guarantee the continuity of the face-to-face
case. We argue that, with the proper choice of the major diagonals as defined in
Definition 3.2, the vertices and edges on the shared face admit the subdivision ma-
trices of the regular cases. We begin with two tetrahedra as shown in Figure 18(a).
To acquire the invariant neighbors for each vertex in the shared face, we subdivide
the tetrahedra 3 times. The 1-ring vertex neighbor of each yellow vertex in Figure
18(b) consists of 6 adjacent vertices on the face and 2 adjacent vertices in each
facing tetrahedron. In addition, we can have 2 more adjacent vertices, decided by
the choice of the major diagonals. Therefore, each vertex has 14 neighbors in total
which form a regular vertex case. For the shared edges, each edge on the shared
face is surrounded by two adjoining octahedra and two adjoining tetrahedra. If we
choose the major diagonals of the two octahedraproperly, we can prove that each
edge has the correct number of neighbors, either 6 or 4, with respect to its relative
position against both major diagonals. All the possible cases are illustrated in Fig-
ure 19. In Figure 19(a) and (b), the edge has 6 neighbors, whereas it has 4 neighbors
in Figure 19(c).

We support our argument with some empirical results. Figure 20 offers a visual
confirmation on the continuity between the tetrahedra. We evaluate the basis func-
tion centered on one of the shared vertices in between. The shared face of the two
tetrahedra are located on thex-y plane. One tetrahedron is placed on the negative
z side, while the other is placed on the positive side. The major diagonals of the
tetrahedra are chosen so that it is in the proper situation defined in Definition 3.2.
The values are evaluated from the 3 levels of the subdivision algorithm. Figure 20
shows very smooth transition between one tetrahedron to another.
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(b) (c)(a)

Fig. 18. An example of the face-to-face case. (a) Two tetrahedra share the face. The or-
ange-colored faces indicate the faces from octahedral cells. (b) The vertices in between.
The yellow vertices has 14 neighbors with the correct choice of the major diagonals. (c)
The 2-ring neighbor of the shared vertex.

(a) (b) (c)

Fig. 19. The different neighbors of the edge between faces by the proper choices of the
major diagonals. The red dotted lines are the major diagonals.

(b) (c)(a)
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Fig. 20. The evaluation of the face-to-face case. (a) The density values of the basis function
centered on the shared vertex over they-z plane. (b) The iso-contour lines of the density.
(c) The function value and its directional derivative along thez-axis. The derivative values
are re-scaled.

The face-to-face case entails the question of the choice of the major diagonals in
arbitrary meshes. The above results suggest that the proper choice of the major
diagonals are important for the continuity of the face-to-face case. It is possible
that the choice cannot satisfy the properties in Definition 3.2 globally for certain
meshes. Thus, we should implement the algorithm carefully so that the choice is as
proper as possible at the initial stage. We discuss it in Section 5.
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4.3 Spectral Analysis

Suppose the matrixS has the eigenvaluesλ0 ≥ · · · ≥ λl in non-increasing order
with the associated eigenvectorsv0, ...,vl. The matrixS is N ×N matrix and each
eigenvectors are inRN . Now, the original control pointsp0 can be rewritten in the
eigenspace:

p0 =
∑

i

aivi, (4.2)

and therefore, any levelj verticespj can be represented by:

pj = Sjp0 =
∑

i

(λi)
jaivi, (4.3)

with each coordinate coefficient matrixai. The coefficientai can be computed by
ai = vi · p0. The conditions of the eigenvalues and eigenvectors for the subdivi-
sion matrix are well understood and it is independent for each coordinate opera-
tion. Therefore, we hypothesize that the similar conditions still hold for our solid
scheme. The conditions are as follows:

(a) λ0 should be equal to 1 for the subdivision to be invariant with respect to trans-
lations and rotations.

(b) λi should be strictly less than 1 whenj > 0 for the convergence of the scheme.
The limit positions for the original control points is then

p0 = lim
j→∞

pj =
∑

i

(
lim

j
(λi)

jaivi

)
= a0v0. (4.4)

(c) λ4 should be strictly less thanλ3. Suppose the subdominant eigenvaluesλ1 =
λ2 = λ3 = λ > λ4 and the vertexp0

0 is the origin. Then we get:

pj

λj
= a1v1 + a2v2 + a3v3 + a4

(
λ4

λ

)j

+ · · · , (4.5)

which means the control points are approaching a fixed configuration up to a
scaling factorλj. The remainders converge to zero in the limit sinceλ > λj

for j ≥ 4. From this observation, we can derive that the three subdominant
eigenvalues determine the behavior of the derivatives atp0

0 in the limit. This
is a sufficient condition to define the characteristic map.

To verify these conditions, eigenvalues and eigenvectors of each subdivision matrix
should be computed. As first observed in (Doo and Sabin, 1978), the subdivision
matrix for an extraordinary vertex in surfaces cases has a cyclic structure due to its
planar symmetry. Therefore, we can apply discrete Fourier transform to compute
the eigen-structure of every valence systematically. Unfortunately, this is no longer
true for the solid cases, as discussed in the previous section. Hence, we need to rely
on numerical computation of the eigen-structure for specific cases. Since we cannot
compute all the possible cases, we begin with statistics on vertex and edge valences
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of arbitrary tetrahedral meshes to determine which valence numbers should be in-
cluded in our analysis. We choose few existing tetrahedral models (Figure 21) to
examine the valence numbers for each vertex and edge. The meshes are acquired
by various tessellation methods including the 3D Delaunay triangulation and the
advance front technique.

(a) (b) (c)

Fig. 21. A selection of arbitrary tetrahedral meshes. (a) A cross-section of a fighter model
with its environment (fighter). (b) Tesselated Stanford bunny (bunny). (c) A model of a
machenical part (spx)

As Figure 22 Table 21 show, the distribution of the valence numbers are concen-
trated on the regular valence numbers. Moreover, the averages are very close to the
regular valence numbers and the deviations are relatively small. These results sug-
gest that in real world application, we only need to analyze relatively small number
of valence cases. In this paper, we choose to analyze the valence number from 5
to 22 for the extraordinary vertices and the valence number from 4 to 9 for the
extraordinary edges.

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Vertex valence

R
at

io

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Edge valence

(a) (b)

fighter

bunny

spx

fighter

bunny

spx

R
at

io

Fig. 22. Distribution charts of the valence numbers of the selected arbitrary meshes. (a)
Vertex valence. (b) Edge valence.

Table 2 presents the list of the first 6 eigenvalues of the selected extraordinary vertex
cases. As we have mentioned, there exist several different configurations for each
valence. We only show few cases in the table. Table 3 shows the list of the first 6
eigenvalues of the selected extraordinary edge cases. Unlike the vertex cases, each
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Model
name

No.
vertices

No.
edges

No.
cells

V−val
average

V−val
maximum

E−val
average

E−val
maximum

fighter 13832 87587 70125 13.75 33 5.12 10

bunny 575 2904 1903 13.95 23 5.06 7

spx 2896 17212 12936 13.65 23 5.09 9

Table 1
Statistics on the valence numbers of the selected arbitrary meshes

valence has unique configuration. However, it differs by the choice of the major
diagonals. Figure 23 shows two different choices of the major diagonals for the
extraordinary edge with the valence 9. In the first row, the diagonals are chosen
such that they are in skew positions mutually. In the second row, the diagonals
point toward the center of the extraordinary edge. As Figure 23(b) and (c) suggest,
the first choice yields much smoother results. The eigenvalues of the first case are
shown in Table 3, whereas the 6 dominant eigenvalues of the second case are:

{1., 0.619939, 0.619939, 0.528431, 0.528431, 0.5}.

The difference between two cases becomes more apparent as the valence is getting
higher. In fact, the characteristic map of the second case fails to confirmC1 con-
tinuity for the valence larger than 8, as discussed in the next section. The values
in Table 3 are taken from the configurations similar to the skew case for each va-
lence. During the implementation of the subdivision algorithm, we try to optimize
the choice of the major diagonals so that it produces the similar result as the first
row for the most of the extraordinary edges. In Appendix B.1 and B.2, we present
the subdivision matrices and their eigenvalues for the lowest valence cases in the
tables. Two different choices of the major diagonals and their subdivision matrices
are shown in Appendix B.2.

It is clear from the computed values that the eigenvalues of the most of the extraor-
dinary cases satisfy the eigenvalues conditions for subdivision algorithms. How-
ever, the results so far only guarantee the convergence of the subdivision algorithm
at the particular vertex or edge. In the next step, we examine the characteristic map
of each case to verifyC1 continuity near the extraordinary vertex or edge.

4.4 Characteristic Map

If the eigenvalues satisfyλ0 = 1  λ1 ≥ λ2 ≥ λ3  λ4, we are able to apply
the characteristic map method by Reif (1995b) to proveC1 continuity. From the
real eigenvectorsv1,v2,v3 associated with the first 3 subdominant eigenvalues, we
define a map:

Ψ = N [v1,v2,v3] : U × Zk −→ R3, (4.6)
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Valence λ0 λ1 λ2 λ3 λ4 λ5

5 1. 0.3125 0.292083 0.15 0.125 0.125

6 1. 0.312499 0.25 0.25 0.25 0.15

7 1. 0.327254 0.327254 0.3125 0.275888 0.15

8(a) 1. 0.480205 0.3125 0.3125 0.249998 0.2375

8(b) 1. 0.375 0.375 0.3125 0.270178 0.15

9 1. 0.405872 0.405872 0.3125 0.26545 0.19437

10(a) 1. 0.477404 0.418566 0.418566 0.2375 0.206434

10(b) 1. 0.426777 0.426777 0.3125 0.261451 0.25

11 1. 0.441511 0.441511 0.3125 0.293412 0.293412

12 1. 0.480205 0.480205 0.480205 0.250002 0.2375

13 1. 0.460313 0.460313 0.353854 0.353854 0.3125

14(a) 1. 0.577132 0.449431 0.449431 0.34832 0.3125

14(b) 1. 0.517404 0.517404 0.480205 0.3125 0.3125

15 1. 0.471364 0.471364 0.392016 0.392016 0.3125

16 1. 0.541169 0.541169 0.480204 0.372645 0.372645

17 1. 0.571212 0.511703 0.511703 0.371472 0.358853

18(a) 1. 0.623289 0.463128 0.463128 0.457191 0.374739

18(b) 1. 0.557148 0.557148 0.480205 0.418566 0.418566

20(a) 1. 0.571212 0.549072 0.549072 0.3875 0.3875

20(b) 1. 0.568361 0.568361 0.480206 0.453454 0.453454

22 1. 0.616629 0.525774 0.525774 0.4625 0.427853

22(b) 1. 0.576511 0.576511 0.480205 0.480205 0.480205

Table 2
Eigenvalues for a selection of the extraordinary vertex cases.

Valence λ0 λ1 λ2 λ3 λ4 λ5

4 1. 0.477404 0.418566 0.418566 0.2375 0.206434

5 1. 0.480205 0.480205 0.480205 0.25 0.2375

6 1. 0.517404 0.517404 0.480205 0.3125 0.3125

7 1. 0.541169 0.541169 0.480204 0.372645 0.372645

8 1. 0.557148 0.557148 0.480205 0.418566 0.418566

9 1. 0.568361 0.568361 0.480206 0.453454 0.453454

Table 3
Eigenvalues for a selection of the extraordinary edge cases.

WhereU is a unit simplex in 3D pivoted on the origin with the corner containing
the origin has been removed at the half points of the edges. Figure 24 illustrates an
example of the control net of the characteristic map and its cross-section. Note that
the characteristic map by Reif et al.is originally defined on 2D space. We generalize
the map to the solid case and assume that it is correct without any proof. Now, we
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Fig. 23. Two different choices of the major diagonals for the extraordinary edge with the
valence 9. (a) The different choices of the major diagonals indicated in the red lines. (b)
The density values. (c) The Iso-contour lines.

presume that if we can prove that the characteristic mapΨ is regular and injective,
then our subdivision algorithm satisfiesC1 continuous. For 2D, the regularity and
injectivity can be proven by considering the complex plane. However, due to lack of
any planar symmetry in general, the direct analogy of the method has been proven
to be difficult in 3D. Instead, we rely on the experimental results to conform its
regularity and injectivity. For the selected cases, we perform the subdivision and
prolongation (Reif, 1995b) successively, up to certain levels, followed by the visual
inspection of the results. In most cases, it has been relatively easy to deduce that the
process will not produce any irregularity or self-intersections. In contrast, Figure 27
shows the characteristic maps for the valence 9 and 11 cases with specific choice
of the major diagonals. In these cases, the diagonals are chosen to point toward
the center, as shown in the second case of Figure 23. During the subdivision and
prolongation process, the maps form a single saddle surface and therefore they
are not injective. In these two cases, we cannot determine theC1 continuous of
the subdivision algorithm near the extraordinary edges by the characteristic map
method.

(a) (b)

Fig. 24. The control net of the characteristic map of the extraordinary vertex with the va-
lence 11. (a) The control net. (b) The cross-section of the control net.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 25. Control nets for a selection of the characteristic maps of the extraordinary vertex
with the valences from 7 to 22. The orange-colored faces indicate the faces from octahedral
cells.

(a) (b) (c) (d) (e) (f)

Fig. 26. Control nets for a selection of the characteristic maps of the extraordinary edges
with the valences from 4 to 9. The orange-colored faces indicate the faces from octahedral
cells.

(a) (b) (c) (d)

Fig. 27. The characteristic maps for the extrarodinary edges with the valences 9 and 11. The
major diagonals are chosen to point toward the center. The maps are not injective. (a-b) The
valence 9 case. (c-d) The valence 11 case.
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1: OCTET-SUBDIVISION ({vi}, {ej}, {ck})
{Input{vi}, {ej}, {ck}: A set of vertices, edges, and cells, respectively}

2: if this is the first subdivisionthen
3: call MAJOR-DIAGONAL -CHOOSE({ck})
4: end if
5: for all vertexvi do
6: compute a new vertex pointpi

7: end for
8: for all edgeej do
9: compute a new edge pointqj

10: end for
11: for all cell ck do
12: if ck is tetrahedralthen
13: split ck into 5 subcellsc0

k, ..., c4
k

14: else ifck is octahedralthen
15: compute a new cell pointrk

16: split ck into 14 subcellsc0
k, ..., c13

k

17: end if
18: inherit the major diagonal choice fromck

19: construct new edges{e′l} from {pi} ∪ {qj} ∪ {rk}
20: end for
21: return{pi} ∪ {qj} ∪ {rk}, {e′l}, {cm

k}

Algorithm 1. OCTET-SUBDIVISION.

5 Implementation

The implementation of the subdivision algorithm is straightforward, except the
maintenance of the major diagonals. As outlined in Algorithm 1, the subdivision
object is represented by the vertices, edges and cells. The edges provide the connec-
tivity information between the vertices. The major diagonal information is stored
with each cell. For tetrahedral cells, the major diagonal is represented by a pair
of non-adjacent edges. For octahedral cells, the major diagonal is represented by a
pair of non-adjacent vertices. Since there are only 3 choices for both cases, only 2
bits of additional memory is required for each cell. For each vertex and edge, we
compute new vertex and edge point by the subdivision rules, using their neighbors.
Then, we split each cell into subcells using the new vertices. During the split, if
the cell is octahedral, we need to compute the cell point. Each subcell inherits the
information on the major diagonal from its parent cell.

If the subdivision is performed for the first time with an arbitrary tetrahedral mesh,
there is no given major diagonal information. In this case, we use a function MAJOR-
DIAGONAL -CHOOSE (Algorithm 2) to choose the major diagonal for each cell
properly. The algorithm is based on the breath-first search of the adjacency tree of
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1: MAJOR-DIAGONAL -CHOOSE({ci})
{Input{ci}: A set of tetrahedral cells

ci.visited; true if the cell is visited during the search.
ci.edges; A set of edges of the cell.
ci.major-diag; A major diagonal of the cell
(ci.major-diag⊂ ci.edges, |ci.major-diag| = 2). }

2: initialize a queueq and a sets
3: q.push(c0)
4: while q 6= ∅ do
5: c← q.pop()
6: s← ∅
7: for each adjacent cellc′ of c do
8: if c′.visited is true then
9: s← s ∪ c′.major-diag

10: else
11: q.push(c′)
12: end if
13: end for
14: if |c.edges−s| > 1 then
15: choosec.major-diagfrom c.edges−s
16: else
17: choosec.major-diagarbitrary
18: end if
19: c.visited← true
20: end while
21: return

Algorithm 2. MAJOR-DIAGONAL -CHOOSE.

the cells. During the search, it tries to minimize the conflict of the major diagonal
choice between adjacent cells, so that the choice is as proper as possible globally.

5.1 Experimental Results

A major benefit of our solid subdivision scheme is the ability to represent com-
plex solid models with heterogeneous materials. Figure 28 shows a selection of
subdivision models designed by a simple modeling tool that we developed for the
subdivision scheme. Models with complex topology can be easily represented with
the unified scheme. Not only the boundaries, but also the internal structures are
smooth and well-defined. Figure 28(f) illustrates a model with non-trivial topology,
which cannot be represented by surface subdivision schemes without serious mod-
ification. Our algorithm can handle it with no exceptional rule, since we make no
special assumption on the connectivity of 3D meshes.
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Figure 29 shows a torus model with hybrid dimensionality. It consists of solid and
surface parts. With some additional rules, our scheme can be used for non-manifold
object representations. Extensive research on non-manifold representation using
the solid subdivision scheme is discussed in (Chang and Qin, 2004).

Figure 30 and Figure 31 present volumetric models with heterogeneous material
properties associated with geometry. In Figure 30, the cylinder model has different
material densities at the top and the bottom of the object. By utilizing our algo-
rithm, we can blend the different densities smoothly. As Figure 30(c) shows, the
result is much smoother than simple linear interpolation. In Figure 31, we assign
tensions at each vertex on the coarsest level using simple Laplace’s equation with
initial condition. Each time step, instead of solving the equation on the fine levels,
we simply apply our subdivision rules to interpolate the values using the coarsest
level as initial values. The results are shown in Figure 31(b) and (c). Even though
the potential has not been fully investigated, we believe that our subdivision scheme
can serve as better blending functions or prolongation operators for finite element
analysis or multigrid method based on tetrahedral meshes, instead of trivariate lin-
ear interpolation. It should be addressed in our future publication.

(a) (b) (c)

(d) (e) (f)

Fig. 28. Solid subdivision models with non-trivial topology. (a-c) Initial control meshes.
(d-f) The models at subdivision level 3 and their cross-sections.
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(a) (b) (c)

Fig. 29. A torus model that consists of a solid and a surface. (a) Initial control mesh. The cut
shows the internal structure. Purple areas are the backside of a surface. (b) A cross-section
of the model at subdivision level 3. (c) Another cross-section of the model at subdivision
level 3.
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Fig. 30. A cylinderical model with heterogeneous material. (a) Initial control mesh and as-
signed material density (color-coded). (b) A cross-section of the model at subdivision level
3 and its density distribution. (c) Comparison of density distribution by our subdivision
algorithm (bold line) and tri-linear interpolation (thin line).
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Fig. 31. A panel model with simulated tension force. (a) Initial control mesh and assigned
tension (color-coded). (b) A cross-section of the model at subdivision level 3 and its tension
interpolation. (c) Comparison of tension interpolation by our subdivision algorithm (bold
line) and tri-linear interpolation (thin line).

6 Conclusion

We have developed novel solid subdivision schemes based on box splines over ar-
bitrary tetrahedral meshes. In addition, their analysis, implementation issues, and
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experimental examples are presented. Trivariate box spline basis functions provide
our scheme desirable continuity as well as a sound mathematical foundation. De-
fined over tetrahedral meshes, the proposed scheme is flexible, robust and easy to
generalize. We have proved the convergence and continuity of the scheme by uti-
lizing existing mathematical techniques as well as supportive empirical results. We
have presented several modeling examples that our scheme can manage easily in
comparison with other contemporary solid representations. These examples have
been particulary chosen to address the specific issues in solid modeling provoked
by the advances in engineering technologies. In particular, the advantages of the
proposed schemes over existing representations are as follows: (a) Unified solid
and boundary representation. (b) Multiresolution approach. (c) Free from topolog-
ical restriction. (d) Ability to represent heterogeneous materials.

There are several problems that we have encountered during the research of the
solid subdivision. First, unlike tensor-product subdivision schemes, a generaliza-
tion of the scheme over higher dimensions is not always trivial. In fact, the general
simplicial mesh subdivision is non-trivial issue for the dimension over 4. Unless
we introduce specific types of polyhedral cells, it is not always possible to devise
high dimensional subdivision schemes over simplicial meshes. Secondly, the con-
tinuity analysis requires better mathematical methods. Unlike the surface cases,
general solid and high dimensional subdivision scheme analysis has not been re-
searched intensively due to several difficulties and lack of necessity until now. In
consequence, most of the related researches employ the similar approaches to ours;
the existing techniques for the surface cases, such as spectral analysis and charac-
teristic map method, and empirical results to support the continuity. None of these
approaches are fully satisfactory for the further development of solid subdivision
schemes. Therefore, new mathematical analysis techniques should be followed to
guarantee the development of high dimensional subdivision schemes. Thirdly, the
increase of the number of cells during the subdivision process always concerns
the practical application of the subdivision scheme. In fact, the question of how
to reduce the speed of the cell increase for 3 and higher dimensional space is far
from trivial. There have been few suggestions, for instance (Pascucci, 2002), but
not without their own problems. We are currently working the better refinement
techniques to reduce the cell growth. Finally, there are few issues that we have
not addressed in this paper, such as volumetric compression and fairing using our
subdivision scheme. These applications are a part of our ongoing research.

A Averaged Subdivision Scheme

As proven in the previous sections, the choice of the major diagonal plays major
role over both the regular structured meshes and the analysis over arbitrary tetrahe-
dral meshes. However, there are some disadvantage involving the diagonals. First,
for an arbitrary mesh, MAJOR-DIAGONAL -CHOOSE (Algorithm 2) does not re-
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turn proper choice of the major diagonalsglobally, in general. Secondly, it requires
meticulous bookkeeping on the entire meshes and across the subdivision levels. Fi-
nally, it generates some “favored” direction in the represented object, which can
cause asymmetry. It is obvious because the basis function, or the box spline, pro-
duced by the subdivision algorithm on the structured mesh isnot radially symmet-
ric. This fact could cause some problem during heterogeneous material modeling,
if the mesh and the diagonals are not carefully chosen.

In fact, there is a simple solution to avoid the major diagonals by averaging the basis
function of each direction. InZm with the octet-truss structure, there are 3 choices
in the directions of the major diagonals,i.e.(1, 1, 0), (−1, 1, 0), and(0, 0, 1). Sup-
pose we describe our objectSΞ associated the particular major diagonal direction
defined by theΞ as:

SΞ(x) =
∑
i∈Zm

piMΞ(x− i), (A.1)

wherepi are initial control points. Let us denote the relevant directional matrices
asΞ1, Ξ2, andΞ3, respectively. Then, we can define the new objectS without any
major diagonals:

S(x) =
1

3

3∑
j=1

SΞj
(x). (A.2)

It is easy to find the corresponding subdivision rules. One can simply alternate
the major diagonals in the regular rules (Figure 12), sum the weights up at each
vertex and divide it by 3. The computed values are shown in Figure A.1. We call
the scheme theaveraged solid subdivision scheme. Note that the face-to-face case
becomes irregular with these averaged masks and the argument in Section 4.2 be-
comes invalid. The extraordinary analysis of this particular scheme requires a new
mathematical tool, which has not been exploited yet.

(b)(a) (c)

: 9 / 16
: 1 / 32
: 1 / 96

: 7 / 24
: 1 / 12
: 1 / 48

: 1 / 6

Fig. A.1. The regular rules for the averaged subdivision scheme.
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B Subdivision Matrices

B.1 Extraordinary Vertex Subdivision Matrix

The matrixSv below is the subdivision matrix for an extraordinary vertex with the
valence 5. The size of the matrix is20 × 20. The subdivision matrices for extraor-
dinary vertices with different valences have the similar structure.
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The first 6 eigenvalues of the matrixSv can be computed by the eigenvalues of the
top-left6× 6 submatrix. The values are:

{1, 5

16
,
15 +

√
70

80
,

3

20
,
1

8
,
1

8
}.
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B.2 Extraordinary Edge Subdivision Matrix

The matrixSv below is the subdivision matrix for an extraordinary edge with the
valence 4. The size of the matrix is19× 19. The major diagonlas are chosen in the
similar way to the first case of Figure 23. The subdivision matrices for extraordinary
vertices with different valences have the similar structure.
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The first 11 eigenvalues computed by the top-left11× 11 submatrix is:

{1, 45 +
√
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The different choices of the major diagonals gives a different subdivision matrix
and the eigen-structure. If we choose all the diagonals toward the extraordinary
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edge, we acquire a different subdivision matrix:

S′e =
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In this case, there is no simple reordering of the vertices inp0 that gives the block
structure. However, we can still compute all the first 11 eigenvalues fromS′e:

{1, 1

2
,
1

2
,
1

2
,
25 +

√
385

160
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

8
}.

As previously mentioned, the difference between the eigenvalues of the subdivision
matrices due to the choice of the major diagonals are subtle if the edge valence is
low. However, if the edge valence becomes higher, in particular over 8, the differ-
ence in the eigenstructure of the subdivision matrices become larger.
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