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This paper presents a new, volumetric subdi-
vision scheme for interpolation of arbitrary
hexahedral meshes. To date, nearly every
existing volumetric subdivision scheme is
approximating, i.e., with each application
of the subdivision algorithm, the geometry
shrinks away from its control mesh. Of-
ten, an approximating algorithm is unde-
sirable and inappropriate, producing unsat-
isfactory results for certain applications in
solid modeling and engineering design (e.g.,
finite element meshing). We address this lack
of smooth, interpolatory subdivision algo-
rithms by devising a new scheme founded
upon the concept of tri-cubic Lagrange in-
terpolating polynomials. We show that our
algorithm is a natural generalization of the
butterfly subdivision surface scheme to a tri-
variate, volumetric setting.
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Since the pioneering work on procedural subdivision
surface schemes by Catmull and Clark [3] and Doo
and Sabin [6] in the late 1970s, much research has
been undertaken to develop and analyze a myriad of
other subdivision algorithms. The great majority of
this work has involved surface schemes exclusively,
primarily because of their many advantages, includ-
ing:
– Generalization of tensor-product splines
– Unification of polygonal representation and

curved geometry
– Multiresolution analysis and level-of-detail con-

trol
– Numerical stability and ease of implementation
– Representation of topologically complex geomet-

ric shapes
– Absence of complicated patching or trimming

operations
In contrast, there has been substantially less explo-
ration of subdivision solid algorithms, i.e., volumet-
ric schemes. Such schemes are similar to surface al-
gorithms in that they consist of a set of rules for refin-
ing control geometry as well as an algorithm for con-
necting the new vertices. Volumetric schemes, how-
ever, consist not only of rules for polygonal faces,
edges and vertices, but also for polyhedral cells. It is
the inclusion of the cells that leads such algorithms
to be volumetric and hence, extremely useful in solid
modeling, volumetric meshing, finite element analy-
sis, and other relevant applications.
To our best knowledge, all existing subdivision solid
schemes are approximating in nature with two ex-
ceptions. One is the interpolatory algorithm by Pas-
cucci and Bajaj [16], which is a trivial tensor-product
generalization of Dyn et al.’s four-point scheme [8]
to rectilinear, volumetric grids. The other scheme is
an algorithm we recently published [5] for recur-
sive subdivision of meshes organized around octet-
truss structures. With an approximating subdivision
scheme, each application of the subdivision algo-
rithm causes the geometry to shrink away from the
initial control mesh. There are numerous applica-
tions in which an approximating subdivision solid
scheme becomes unattractive and produces unsatis-
factory results. Typical examples include finite el-
ement analysis (FEA) and computational fluid dy-
namics (CFD) simulation. In such applications, it is
imperative that the material values (e.g., mass, veloc-
ity, pressure) not be modified as the domain space
is refined, and that the simulation variables be inter-
polated smoothly across the elements. In addition,
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one can easily find scenarios in CAD/CAM in which
both geometric constraints and functional require-
ments must be satisfied exactly, and may be difficult
or impossible to meet by using an approximating
scheme. Another application is scattered data inter-
polation, in which the solution may be derived more
easily by an interpolating algorithm.

1.1 Research contributions

To address the lack of general, interpolatory, volu-
metric subdivision algorithms, we propose, derive,
analyze, and implement such an algorithm for re-
cursively subdividing arbitrary hexahedral meshes.
In contrast to tensor-product schemes, like that of
Pascucci and Bajaj [16], our scheme can subdivide
any hexahedral mesh, regardless of its topology and
connectivity. Our algorithm seeks to bridge the gap
between existing state-of-the-art subdivision algo-
rithms and solid modeling applications in the real
world. It is strongly inspired by existing interpola-
tory schemes for subdivision curves and surfaces and
non-trivially generalizes such algorithms to a volu-
metric setting. The scheme, which is derived directly
from tri-cubic, Lagrange, interpolating polynomials,
can be used to subdivide hexahedral meshes to any
user-specified level in order to conform with error
tolerances or aesthetic requirements.

1.2 Background of subdivision solid
schemes

Subdivision solids have recently emerged as a new
solid modeling approach and interactive deforma-
tion technique. In comparison with well-established
modeling techniques associated with subdivision
surfaces, subdivision solid formulations transcend
the conventional limitation of surface-based ap-
proaches by defining geometry and topology both
in the interior and on the boundary of solid objects.
The first documented volumetric subdivision algo-
rithm, that of MacCracken and Joy [12], generalizes
tri-cubic B-spline solids to meshes of arbitrary topol-
ogy. Bajaj and colleagues [1] have proposed an al-
ternative to the MacCracken–Joy algorithm that also
reproduces tri-cubic B-spline volumes under regular
topological conditions. Both algorithms are approx-
imating in nature. Chang et al. [4] derived a C1 con-
tinuous, volumetric subdivision solid scheme based
on box splines that must be applied over hybrid

tetrahedral/octahedral meshes. Other recent work
includes the investigation of wavelet decompositions
using subdivision volumes [2], hierarchical repre-
sentation of time-varying data [11], and physics-
based animation and volumetric sculpting [13, 14].

2 From butterfly surfaces to
interpolatory subdivision solids

Our subdivision solid algorithm is inspired by an ex-
tension of Dyn et al.’s butterfly subdivision scheme
for interpolation of triangular meshes [9]. Specifi-
cally, the algorithm has its roots in the averaged but-
terfly scheme [7], which, unlike the normal butter-
fly algorithm, is applied over quadrilateral meshes.
We have discovered that the original butterfly algo-
rithm does not generalize directly to 3D, whereas the
averaged butterfly scheme does. The reason can be
explained as follows. In order to derive a volumetric
subdivision scheme that contains a single subdivi-
sion rule each for vertices, edges, faces and cells,
we need a mesh that has a single cell type. Unfortu-
nately, a tetrahedral mesh fails to satisfy this require-
ment. Put another way, we cannot fill a 3D space
using a single type of tetrahedron. However, in both
2D and 3D, the spaces can be completely filled in
a topologically regular fashion using rectangular ge-
ometry (i.e., rectangles in 2D, hexahedra in 3D). The
averaged butterfly scheme provides an approach for
using such geometry to fill a 2D space in a recursive
fashion. Our new algorithm provides the analogous
case in 3D by recursively subdividing hexahedral
meshes.
In the following sections we first derive the normal
butterfly algorithm and then present a naive, asym-
metric extension of that scheme to 3D. Afterwards,
we present our subdivision scheme, which improves
the naive refinement strategy by averaging multiple
copies of the naive algorithm’s masks. In this way,
the derivation borrows the idea presented in [7], in
which multiple copies of the normal butterfly algo-
rithm’s subdivision masks are averaged to derive the
averaged butterfly scheme. This approach produces
a symmetric, volumetric subdivision scheme for use
over hexahedral meshes.

2.1 Butterfly subdivision surfaces

The derivation of the butterfly subdivision algo-
rithm [7, 9] starts from the regular decomposition of
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Fig. 1. Butterfly scheme mask for a regular 2D domain

the 2D Euclidian space into a three-directional grid,
as illustrated in Fig. 1. Without loss of generality we
will assume the three grid directions are (1, 0), (0, 1)
and (1, 1). We restrict ourselves to the finite grid in
the figure for sake of clarity. In the mathematical
limit of subdivision, the algorithm reproduces bi-
cubic surfaces that are at least C1 continuous across
surface patch boundaries.
Now, the cubic polynomial of two variables written
in general form contains 10 terms:

f (x, y) = a0x3 +a1y3 +a2x2y +a3xy2 +a4x2

+a5y2 +a6xy +a7x +a8y +a9. (1)

Note that we will assume that f is a vector-valued
function and returns a 2-vector. In order to de-
rive an interpolating subdivision scheme that repro-
duces this polynomial over the regular grid shown
in Fig. 1, it is necessary first to compute the co-
efficients of the function (i.e., the ai’s). Let a =
[a0 a1 . . . a9]� be the matrix of polynomial coef-
ficients; let p be the column vector of the 10 grid
positions labeled in Fig. 1; and let F be a square
matrix where Fij represents the ith term of f (x, y)
evaluated at the jth grid position. We will assume
that the grid positions are enumerated in the follow-
ing order:

p = [ p00 p01 p10 p11 p12 p21 p22 p23 p32 p33]� , (2)

where an entry pij represents the vector

pij = [ i j ]� .

The system of equations Fa = p cannot be solved ex-
actly, however, because F is singular. It can be made
non-singular by removing the two mixed terms from
the polynomial, x2y and xy2, leaving eight terms. Let
us call this new function f̃ (x, y). Note that the ex-
tremal grid positions p00 and p33 are also removed.
The modified system of equations F̃ã = p̃ can then
be solved directly with Gaussian elimination. The
coefficients we obtain (̃a) are expressed in terms of
the eight grid points.
Computing the position of a new vertex with this
polynomial is a simple manner of evaluating f̃ (x, y)
at the center of the grid using the coefficients we
just obtained. This evaluation produces the following
subdivision rule:

f̃
(

3

2
,

3

2

)
= 1

2
(p11 + p22)+2w(p12 + p21)

−w (p01 + p10 + p23 + p32) (3)

for the vertex labels used in Fig. 1 and for w = 1
16 .

The weight, w, is the tension parameter of butterfly
surfaces and can be modified to change the limit ge-
ometry. When applied over triangular surfaces, Eq. 3
is the familiar edge-bisection rule used in butter-
fly subdivision surface algorithm [9]. Since triangu-
lar meshes are generally preferred over quadrilateral
meshes in computer graphics applications involving
polygonal surfaces, the grid is typically tessellated.
In the regular case, all main diagonals are oriented in
the same direction. To obtain the edge-point masks
for both horizontal and vertical edges, the mask in
Fig. 1 can be mapped onto the other two directions,
(1, 0) and (0, 1). For instance, the mask for a hori-
zontal edge is depicted in Fig. 2. The mask for the
(0, 1) direction can be obtained in a similar fashion.

2.2 Naive extension of butterfly scheme to
volumes

Based on the above derivation of the butterfly surface
algorithm, it is straightforward, although certainly
not trivial, to generalize the approach to a volumet-
ric setting. The essential derivation process remains
the same, although in the volumetric case, the under-
lying interpolating polynomial is tri-variate, rather
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2

3

Fig. 2. Butterfly edge-point mask for an edge lying in the direction of the (1, 0) axis
Fig. 3. Regular 3D domain over which our algorithms are defined

than bi-variate. As a result, the same subdivision for-
mula generates three subdivision rules, one each for
edges, faces and cells. Additionally, the grid is com-
prised not of quadrilaterals, but of hexahedra. This
has several ramifications for the subdivision rules
(which will be explained later).
Let us begin the derivation by noting that the cubic
polynomial of three variables written in general form
contains 20 terms:

h(x, y, z) = b0x3 +b1 y3 +b2z3 +b3x2y +b4x2z

+b5xy2 +b6y2z +b7xz2 +b8yz2 +b9xyz

+b10x2 +b11y2 +b12z2 +b13xy +b14xz
+b15yz +b16x +b17y +b18z +b19. (4)

Note that h is a vector-valued function and returns
a 3-vector. (As we see later, however, h(x, y, z) can
be modified to interpolate material values and other
scalars.) The corresponding regular grid for this
polynomial can be seen in Fig. 3. By regular we
mean that each vertex has valence six. As we saw
in the butterfly surface derivation, all face diagonals
must be oriented in the same direction for the grid
to be considered regular. The same is true for the 3D
domain, with the additional requirement that cell di-
agonals must also point in the same direction. Note

as well that the two extremal points, q000 and q333,
must not be considered in order to have exactly the
20 positions required for Eq. 4. As we did in the
surface derivation, we assemble the polynomial co-
efficients into a column vector, b; we assemble the
grid positions into a column vector, q; and then we
compute a matrix H, where Hij indicates the ith term
of h (x, y, z) evaluated at the jth grid position. We
will assume that, as with the p vector earlier, the grid
positions in q are enumerated in lexicographic order.
Just as the matrix F was singular because of the
mixed terms, so is H. This precludes a direct so-
lution of Hb = q. After removing the six mixed
terms of h (x, y, z) (i.e., x2y, x2z, xy2, xz2, y2z,
yz2), we are left with a polynomial, h̃ (x, y, z), of
14 terms:

h̃(x,y, z) = b̃0x3 + b̃1y3 + b̃2z3 + b̃3xyz

+ b̃4x2 + b̃5 y2 + b̃6z2 + b̃7xy + b̃8xz

+ b̃9 yz + b̃10x + b̃11y + b̃12z + b̃13. (5)

Note that we also drop the six grid positions q001,
q010, q100, q233, q323 and q332. The smaller set of
equations H̃b̃ = q̃ can then be solved directly to
obtain the 14 coefficients in b̃. When h̃ (x, y, z) is
evaluated at the center of the grid with these co-
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a b

Fig. 4. Cell-point mask for the naive scheme. The weights for the p-vertices, q-vertices and r-vertices are, respectively: wp =
1
2 , wq = w, wr = −w

efficients, we obtain the following subdivision for-
mula:

h̃
(

3

2
,

3

2
,

3

2

)
= 1

2

2∑
i=1

pi +w

6∑
i=1

qi −w

6∑
i=1

ri (6)

for the vertex labels used in Fig. 4b and for w =
1

16 .
Equation 6 and the corresponding grid configura-
tion of Fig. 4 define the subdivision formula for
a naive generalization of the original butterfly sur-
face scheme to 3D. In particular, Eq. 6 defines the
rule to compute a cell-point whose mask is exactly
the vertex configuration depicted in Fig. 4b. (Hence-
forth, all subdivision masks are drawn in a right-
handed coordinate system.) It is interesting to note
that the butterfly algorithm generalizes in 3D to a cu-
bical grid and not a tetrahedral one, for the reasons
given in Sect. 2.
In the butterfly surface algorithm, the original 8-
point mask for the (1, 1) direction is mapped onto
the (1, 0) and (0, 1) directions to compute the other
subdivision masks. In our 3D algorithm, the cell-
point mask can be mapped in a similar fashion to
define the face-point and edge-point masks. Specif-
ically, the face-point rules can be acquired by map-
ping the cell-point rule onto the directions (0, 1, 1),

(1, 0, 1) and (1, 1, 0). (There are six face-point rules
in total, but the remaining three can be acquired
via symmetry from the three enumerated cases.)
This mapping takes place as follows: note that for
the cell-point rule, the major directions that de-
fine the cell are (1, 0, 0), (0, 1, 0) and (0, 0, 1),
and its main diagonal is the sum of these direc-
tions: (1, 1, 1) (see Fig. 4a). In order to define the
face-point rule for the front-facing and back-facing
faces in Fig. 4, we map the three directions as fol-
lows: (1, 0, 0) → (1, 0, 0), (0, 1, 0) → (0, 1,−1)
and (0, 0, 1) → (0, 0, 1). Figure 5a shows this map-
ping clearly. When we add the three new directions,
we obtain the vector (1, 1, 0), which corresponds
with the bold line in Fig. 5b. A similar process can be
followed to map the cell-point mask to obtain other
face-point masks.
The edge-point rules can be acquired by mapping the
cell-point rule onto the directions (0, 0, 1), (0, 1, 0)
and (1, 0, 0). There is a total of 12 edge-point rules,
but the other nine edge-point masks can be ac-
quired via symmetry from these three cases. For
the particular edge-point mask given in Fig. 6b,
the mapping is as follows: (1, 0, 0) → (1,−1,−1),
(0, 1, 0) → (0, 1, 0) and (0, 0, 1) → (0, 0, 1). When
we add the new directions, we obtain the vec-
tor (1, 0, 0), which corresponds to the bold line
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5a 5b

6a 6b

Fig. 5. Face-point mask for the naive scheme. The weights for the p-vertices, q-vertices and r-vertices are, respectively:
wp = 1

2 , wq = w, wr = −w

Fig. 6. Edge-point mask for the naive scheme. The weights for the p-vertices, q-vertices and r-vertices are, respectively:
wp = 1

2 , wq = w, wr = −w

in Fig. 6b. The edge-point masks for the (0, 1, 0)
and (0, 0, 1) directions can be found in a similar
fashion.
The subdivision rule that defines the positions of the
face-points and edge-points is the same as that of the
cell-points, namely, Eq. 6. Note that the vertices have
been labeled in Figs. 5b and 6b to correspond with
the subdivision formula.

3 The subdivision algorithm

The naive 3D extension of the butterfly algorithm
described in the previous section suffers from a num-
ber of drawbacks that hampers its usefulness. First,
the main cell diagonals must be oriented in the same
direction, and each vertex must have valence six.
A strict vertex ordering is therefore required to main-
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a b c d
Fig. 7. Cylindrical control mesh subdivided with our subdivision solid scheme. a Control mesh. b Scaling the control mesh
reveals the cells comprising the model. c,d Scaled subdivision mesh after one and two levels of subdivision, respectively

tain the diagonals between subdivision levels, which
requires extra bookkeeping effort in the implementa-
tion. Second, and more importantly, the subdivision
masks cannot accommodate arbitrary hexahedral
meshes. This precludes their use in most real-world
applications involving hexahedral meshes (e.g., FEA
and CFD). Third, the subdivision masks are asym-
metric and do not assign equal weight to all vertices
in a local neighborhood. In particular, the masks are
biased toward vertices lying at the ends of the cell
diagonals. This causes certain vertices to influence
the limit shape more than others, which is clearly
undesirable in most situations.
In order to overcome these difficulties, we have de-
rived an alternate scheme that averages multiple
copies of the naive algorithm’s subdivision masks.
The approach we take is to compute the subdivision
masks for all possible orientations of the main cell
diagonal, add the contributions from each mask, and
then normalize the results. This process is carried out
for the cell-point mask, face-point mask and edge-
point mask. As we show, the resulting subdivision
masks, although larger in support, are symmetric and
are more amenable to application over arbitrary hex-
ahedral grids. A similar approach was taken by Dyn
et al. [7] in deriving an averaged butterfly scheme
for subdividing arbitrary quadrilateral meshes. An
example of a mesh subdivided with our averaged
scheme can be seen in Fig. 7.

3.1 Rules for meshes of regular topology
First we present subdivision rules for regular hexahe-
dral meshes, in which each vertex in the mesh has va-

lence six. In Sect. 3.2 we generalize the rules to han-
dle topologically non-regular hexahedral meshes.

3.1.1 Cell-point rule

The cell-point subdivision mask for our scheme is
obtained by computing the different naive scheme’s
cell-masks (Fig. 4b) for the four possible orientations
of the main diagonal in a cell. Adding these masks
and normalizing the weights produces the averaged
mask shown in Fig. 8. The cell-point rule is:

cp = 6w+1

8

8∑
i=1

pi − w

4

24∑
i=1

qi. (7)

3.1.2 Face-point rule

Averaging the six naive scheme’s face-point masks
(Fig. 5b) produces the averaged mask seen in Fig. 9.
The face-point rule is:

f p = 2w+1

4

4∑
i=1

pi + w

4

8∑
i=1

qi

− w

4

8∑
i=1

ri − w

8

16∑
i=1

si. (8)

3.1.3 Edge-point rule

Averaging the 12 naive scheme’s edge-point masks
(Fig. 6b) produces the averaged mask seen in Fig. 10.
Note that many of the terms cancel each other, which
results in a mask with fewer vertices than one might



K.T. McDonnell et al.: Interpolatory, solid subdivision of unstructured hexahedral meshes

8

9

10

Fig. 8. Cell-point mask for our
new subdivision scheme. The
weights for the p-vertices and
q-vertices are, respectively: wp =
6w+1

8 , wq = −w
4 . The opaque

rendering on the left shows the
cellular structure of the mask

Fig. 9. Face-point mask for our
new subdivision scheme. The
weights for the p-vertices,
q-vertices, r-vertices and s-vert-
ices are, respectively: wp =
2w+1

4 , wq = w
4 , wr = −w

4 , ws =
−w

8

Fig. 10. Edge-point mask for
our new subdivision scheme.
The weights for the p-vertices,
q-vertices and r-vertices are, re-
spectively: wp = 1

2 , wq = w
4 ,

wr = −w
4 . The cancelling of

terms in the derivation leads to
a mask of smaller size than ex-
pected

expect. The edge-point rule is:

ep = 1

2

2∑
i=1

pi + w

4

8∑
i=1

qi − w

4

8∑
i=1

ri. (9)

3.2 Rules for meshes of non-regular
topology

As we show below, our new subdivision scheme is
very amenable to application over arbitrary hexahe-

dral meshes since it does not depend on a particular
ordering of the vertices or choice of cell diagonal.
The rules must be generalized to handle hexahe-
dral meshes that feature extraordinary edges (i.e.,
edges with greater than four or less than four ad-
jacent faces) and extraordinary vertices (i.e., ver-
tices not of valence six). Fortunately, the rules can
be generalized easily to handle these non-regular
topological conditions. We now investigate how
the rules must be changed to accommodate such
situations.
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Fig. 11. Face-point mask for extraordinary vertices and edges. A mask containing two extraordinary vertices is shown here.
The edge drawn in bold is an extraordinary edge. The weights for the p-vertices, q-vertices, r-vertices, s-vertices and
t-vertices are, respectively: wp = 2w+1

4 , wq = w
4 , wr = −w

4 , ws = −w
8 , wt = −w

8

3.2.4 Cell-point rule

In order to define subdivision rules and masks that
can be applied over non-regular hexahedral meshes,
we must examine the subdivision masks and deter-
mine which vertices, if any, are shared by cells that
define the mask. We must also determine if the dupli-
cation or absence of shared vertices in a non-regular
mesh causes the subdivision masks to be ill-defined.
For instance, inspection of the cell-point mask in
Fig. 8 reveals that the vertices adjacent to the cell it-
self can be identified solely by locating those vertices
1-adjacent to the cell’s vertices. That is, the subdivi-
sion mask is obtained by taking vertices from the cell
itself, as well as the cells face-adjacent to the cell.
This means that Eq. 7 can be used to compute a cell-
point even when the neighboring connectivity is very
complicated. Hence, the cell-point subdivision mask
does not require modification in order to handle arbi-
trary hexahedral meshes.

3.2.5 Face-point rule

Unlike the cell-point rule, the averaged scheme’s
face-point rule does require modification in order to
handle extraordinary edges. As illustrated in Fig. 9,
there are several vertices labeled r in the middle of
the mask that are shared by adjacent cells that define
the mask. Under a regular topological setting, there
are eight such r-vertices, two per edge. If one or more
of the edges connecting these vertices is extraordi-
nary, which is the case in Fig. 11, then a special rule
is required to handle the extra vertices introduced

into (or subtracted from) the mask. Note that vertices
labeled q, although shared by adjoining cells, can be
uniquely identified by obtaining them from the two
cells that meet at the face itself. Since we assume
that each face has at most two adjacent cells, there is
never a problem in locating these eight q-vertices.
As we mentioned, there are eight r-vertices in the
regular case of the face-point mask. Irregularities
arise when one or more of the vertices p is extraor-
dinary. Specifically, for each edge pi p j that is adja-
cent to more than four cells, the weight of each such
r-vertex (now indicated by t in Fig. 11) becomes −w

8 .
Note that there will be at most two such vertices per
end-point per edge since each face is shared by at
most two cells (Fig. 11). The subdivision formula for
the face-point is therefore modified as follows:

f̂ p = 2w+1

4

4∑
i=1

pi + w

4

8∑
i=1

qi − w

4

8−2N∑
i=1

ri

−w

8

16∑
i=1

si − w

8

4N∑
i=1

ti (10)

where N indicates the number of extraordinary edges
in the face. It is easy to confirm that this rule reduces
to Eq. 8 when the mesh is regular.

3.2.6 Edge-point rule

The averaged scheme’s edge-point mask must also
be modified in order to handle two possible irregu-
larities: (1) More than (or less than) four faces are



K.T. McDonnell et al.: Interpolatory, solid subdivision of unstructured hexahedral meshes

Fig. 12. Edge-point masks for non-regular topological settings. a Extraordinary edge. The weights for the p-vertices,
q-vertices and r-vertices are, respectively: wp = 1

2 , wq = w
5 , wr = −w

5 . b Regular edge containing one extraordinary vertex.
The weights for the p-vertices, q-vertices, r-vertices and s-vertices are, respectively: wp = 1

2 , wq = w
4 , wr = −w

4 , ws = −w
8

incident on the edge (Fig. 12a) and/or (2) One or
more adjacent edge is extraordinary (Fig. 12b). The
first situation arises when one or both of the edge’s
end-points are extraordinary vertices. The second
circumstance appears when a vertex normally shared
by adjacent cells (i.e., an r-vertex in Fig. 10) is re-
placed by two vertices because of a local topological
irregularity. We call this kind of vertex a split ver-
tex. (Recall that a similar situation can occur with the
face-point mask when an extraordinary edge causes
a normally shared vertex to be replaced by two dis-
tinct vertices; see Fig. 11.) In the regular case of
four incident faces, each p-vertex receives a weight
of w

4 and each r-vertex receives −w
4 (Fig. 10). For

the general case of N incident faces, each pi is
given weight w

N , while each ri receives −w
N . Fig-

ure 12a illustrates an edge with five incident faces
and the resulting vertex weights. In Fig. 12b we see
that the edge drawn in bold in the middle of the
mask has a non-regular number of adjacent edges,
which causes the weights of split vertices (labeled
s) to change from −w

4 to −w
8 . In the general case

of N incident faces, this weight for a split vertex is
− w

2N . These two non-regular topological conditions
are subsumed by the following modified edge-point
formula:

êp = 1

2

2∑
i=1

pi + w

N

2N∑
i=1

qi − w

N

2N−M∑
i=1

ri − w

2N

2M∑
i=1

si

(11)

where N is the number of faces incident on the
edge and M is the number of extraordinary edges
incident on the pi’s that appear in the mask (i.e.,
the number of split vertices). Note that Eq. 11 re-
duces to Eq. 9 for regular meshes (i.e., N = 4,
M = 0).

4 Boundary rules

For the examples in this paper, we employ Dyn’s av-
eraged butterfly scheme for quadrilateral meshes [7]
to subdivide edges and faces on the boundaries of
models. Our subdivision rules themselves do not
make any assumption about the boundary geome-
try. This permits users of our algorithms to employ
nearly any quadrilateral-based subdivision surface
on the boundary to meet design requirements or
aesthetic criteria. However, we suggest an interpo-
lating scheme like the averaged butterfly algorithm
be used in order to avoid self-intersection. Cells on
the boundary require special care since their sub-
division masks are ill-defined. Since there are not
enough neighboring cells to specify the cell-point,
face-point and edge-points masks completely, spe-
cial rules must be applied in these regions. In our ex-
amples we simply employ linear subdivision to han-
dle these cases. With each level of subdivision, the
thickness of this special layer of cells decreases by
one-half. This ensures that any error introduced by
linear subdivision decreases exponentially as a func-
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a b c

Fig. 13. Renderings of the subdivision algorithm’s basis function. The scale indicates the contribution of a vertex to its neigh-
bors. The basis function was computed explicitly via subdivision. In b and c we have changed the viewpoint to highlight
better the structure of the basis function

tion of subdivision level. Note that the use of special
rules on or near the boundary necessarily changes the
continuity of the scheme in these small regions. This
effect is unavoidable.

5 Proof of continuity

5.1 Convergence and continuity for meshes
of regular topology

We will use techniques described by Dyn et al. [10]
to prove that our subdivision scheme is C1 contin-
uous over hexahedral meshes of regular topology.
The surface representation of our scheme is based on
the averaged butterfly scheme, whose continuity was
proven to be of the C1 class by Dyn et al. [7] There-
fore, we focus on the proof of the continuity of the
solid case in this section.
Since our subdivision scheme has no closed-form ex-
pression for its basis functions (Fig. 13), we cannot
simply extract the basis functions and examine them
analytically. Therefore, we rely on the analysis of
subdivision matrices and characteristic functions to
study the scheme’s convergence and continuity prop-
erties. By showing that the characteristic polynomi-
als of the subdivision process have certain properties,
we will demonstrate that the algorithm generates vol-
umes that are C1 in the limit.
Note that a subdivision algorithm can be expressed
in matrix form as pk+1 = Spk, where pk is the vector
of points at subdivision level k, S is the local subdi-
vision mask, and pk+1 is the resulting vector of new

points. We further consider the subdivision process
as discrete convolution of sequences (see [18]). In
this way, we can relate the subdivision process with
a polynomial expression, i.e., its generating function.
Generally, any binary stationary subdivision scheme
for solids can be written as

Pk+1(z) = a(z)Pk(z
2), z ∈R3, (12)

where Pk(z) = ∑
µ∈Z3 pk

µzµ is a formal generating
function associated with the control points pk =
{pk

µ}µ∈Z3 at the level k, and a(z) is the characteristic
polynomial derived from the local subdivision ma-
trix S:

a(z) =
∑
µ∈Z3

aµzµ. (13)

We follow a standard multi-index notation through-
out the proof.
By comparing these coefficients after n iterations of
the subdivision process, one can show (see [7]) that

‖Sn‖∞ = max
γ

∑
ν∈Z3

a[n]
2nν+γ , (14)

where γ ∈ {0, 1, . . . , 2n − 1}3 and a[n](z) =∏n−1
j=0 a(z2 j

) = ∑
µ a[n]

µ zµ. This relation will be used
to calculate the norm of the subdivision matrix. We
utilize the coefficients of the characteristic polyno-
mial (or Laurent polynomial, to be correct) instead of
the matrix itself to compute the norm. The rest of the
proof will follow the steps below:
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1. Find the characteristic polynomial of the scheme.
2. Derive the difference processes of the scheme

along the directions that are associated with the
characteristic polynomial of the scheme.

3. Prove that the difference processes are continu-
ous by using their characteristic polynomials, and
thereby show that the scheme is C1.

Steps 2 and 3 are special cases of the following two
theorems. Readers who are interested in the proofs
of the theorems are referred to the work by Dyn et
al. [10]

Theorem 1. Let the characteristic polynomial of S
have the form

a(z) = q(z)
s∏

i=1

(
zθ(i) +1

)
, (15)

where q is a Laurent polynomial and θ(i) ∈ Zs satis-
fies∣∣det

(
θ(1), . . . , θ(s)

)∣∣ = 1. (16)

Let Di be the subdivision matrix corresponding to
the polynomial a(z)(zθ(i) + 1)−1. Then the subdivi-
sion scheme associated with S is uniformly conver-
gent if and only if for some L ∈ Z+,

‖DL‖∞ = max
1≤i≤s

‖DL
i ‖∞ < 1. (17)

Theorem 2. Let S be convergent with a characteris-
tic polynomial

a(z) = (zθ +1)ν2−νq(z), (18)

where θ ∈ Zs, ν ∈ Z+, and q is a Laurent polynomial.
If the subdivision scheme associated with q con-
verges uniformly, then for all initial control points
p0,

∂ν
θ S∞ p0 ∈ C(Rs), (19)

where ∂θ means the directional derivative in the di-
rection θ, i.e.,

∂θ f(x) = lim
t→0

( f(x + tθ)− f(x)) . (20)

Theorems 1 and 2 provide us the sufficient condi-
tions to guarantee the C1 continuity of the subdi-
vision scheme. The conditions for the norm of the

matrix will be confirmed by means of the relation ex-
plained in Eq. 14. During most of the process, we
will rely on numerical experiments to verify the sat-
isfaction of the conditions.
The characteristic polynomial of the subdivision
scheme can be computed by successive applications
of the schemes over a regular mesh in 3D. It has the
form of

a(z) =
∑
µ∈Z3

aµzµ, (21)

where the coefficients are given by

aµ = 6w+1

8
, µ = (±1,±1,±1)

aµ = −w

4
, µ = (±1,±1,±3)

aµ = 2w+1

4
, µ = (0,±1,±1)

aµ = 1

4
, µ = (±1,±1,±2)

aµ = −w

4
, µ = (0,±1,±3)

aµ = −w

8
, µ = (±1,±2,±3)

aµ = 1

2
, µ = (0, 0,±1)

aµ = w

4
, µ = (0,±1,±2)

aµ = −w

4
, µ = (0,±2,±3)

aµ′ = aµ, if µ′ = σ(µ), σ ∈ S3.

Here, S3 denotes the set of all permutations over
{1, 2, 3}, which is followed by the symmetry of the
subdivision mask.
It is relatively easy to confirm that the scheme is
convergent by means of eigenvalue analysis of the
subdivision matrix. In particular, the subdominant
eigenvalue of our subdivision scheme is strictly less
than 1 for w < 0.5, which is sufficient to show its
convergence. The characteristic polynomial of the
subdivision scheme can be factored by (1+ z1)

2(1+
z2)

2(1+ z3)
2. Therefore, it can be written as

a(z) = 1

2
(1+ z1)

2(1+ z2)
2(1+ z3)

2q(z,w), (22)

where q(z,w) is a Laurent polynomial with respect
to z for a given weight w.
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Now, we employ Theorems 1 and 2 for the proof of
C1 continuity. A close inspection of the theorems re-
veals that, for the scheme to be C1 continuous, it is
sufficient to show that ‖DL

(i1,i2)‖∞ < 1 for some L
where D(i1,i2) is a subdivision matrix whose generat-
ing function is

d(i1,i2)(z) = 2(1+ zi1)
−1(1+ zi2)

−1 a(z).

Because a(z) is invariant over a permutation on in-
dices, it is equivalent to show that ‖DL

(1,1)‖ < 1 and
‖DL

(1,2)‖ < 1, where

d(1,1)(z) = 2(1+ z1)
−2 a(z), and

d(1,2)(z) = 2(1+ z1)
−1(1+ z2)

−1 a(z),

respectively.
If we let ‖Dk‖∞ = max(i1,i2) ‖Dk

(i1,i2)‖∞, then when
w = 1

16 , the norms are

‖D1‖∞ = 1.75,

‖D2‖∞ 	 1.5313,

‖D3‖∞ 	 1.3523,

‖D4‖∞ 	 1.0914,

‖D5‖∞ 	 0.8188.

Figure 14 shows ‖Dk‖∞ as a function of the
weight w. Generally, ‖DL‖∞ < 1 when L ≥ 5, at
least for w ∈ (0, 0.1787]. By the theorems, we can
guarantee that, when w is within the range, the sub-
division scheme is C1 continuous over regular hexa-
hedral meshes.

5.2 Continuity for meshes of non-regular
topology

Non-regular topologies include cases in which a ver-
tex or an edge has non-standard connectivity. In reg-
ular hexahedral meshes, each vertex has a valence
of six and each edge is shared by four adjacent
faces. When the mesh does not have these proper-
ties, we say that mesh has an extraordinary vertex or
extraordinary edge. Because non-regular topologies
become isolated from each other during the subdi-
vision process, we can assume that we have only
a finite number of extraordinary cases in any given
mesh.
For subdivision surface schemes, eigenanalysis is the
standard technique to prove the continuity of the

Fig. 14. A graph of ||Dk||∞ with respect to the weight value w

scheme around non-regular topologies. Suppose λi’s
are the eigenvalues of the subdivision matrix S in de-
creasing order. The basic idea is that the initial con-
trol points p0 can be expressed by the corresponding
eigenvectors vi in the eigenspace of the matrix S,

p0 = a0v0 +a1v1 +· · ·+anvn, (23)

and the limit process can be expressed as

p� = S� p0 = λ�
0a0v0 +λ�

1a1v1 +· · ·+λ�
nanvn, (24)

where � → ∞ and ai’s are the coordinates of p0

in the eigenspace. It is well-known that the domi-
nant eigenvalue λ0 is related to their limit positions,
whereas the sub-dominant eigenvalues λ1, · · · , λd
are related to the first order derivatives in the d-
dimension space. The rest of eigenvalues must be
strictly less than these eigenvalues to guarantee the
convergence (see [20]).
In a surface scheme analysis, extraordinary vertices
are the only kinds of special cases that we have to
consider. However, solid scheme analysis involves
not only the analysis of extraordinary vertices, but
also that of extraordinary edges. Unlike the relatively
simple surface cases, both of the extraordinary cases
in solid schemes lack planar symmetry (in general).
This situation prohibits a direct application of spec-
tral analysis techniques such as the discrete Fourier
transform, which is often employed in eigenanalysis
to compute eigenvalues and eigenvectors of the sub-
division matrix symbolically (see [6]).
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Fig. 15. A selection of non-regular topology meshes we analyzed in order to prove numerically that our scheme is C1

continuous. The last four meshes show cases of extraordinary edges

To overcome these difficulties, we have computed
eigenvalues and eigenvectors of the subdivision ma-
trix around the extraordinary cases numerically. Ob-
viously, it is not possible to acquire the proof of the
general cases in this way. We have selected over 20
extraordinary cases and have analyzed their eigen-
values and eigenvectors to verify the necessary con-
ditions for the convergence of the scheme around the
extraordinary cases. For the selected cases we have
also have numerically performed characteristic map
analysis [17], which is a well-understood technique

Table 1. Eigenvalues for a selection of the extraordinary vertex
cases

Valence λ0 λ1 λ2 λ3 λ4

5 1 0.499420 0.454695 0.454695 0.352565
7 1 0.500000 0.484286 0.484286 0.404687
8 1 0.465107 0.458056 0.455922 0.447308
8 1 0.500000 0.470715 0.470715 0.461119
9 1 0.500000 0.495818 0.495818 0.439426

10 1 0.475022 0.475022 0.459298 0.445021
10 1 0.500000 0.500000 0.500000 0.432938
11 1 0.500000 0.494283 0.494283 0.470715
12 1 0.459298 0.459298 0.459298 0.445021
12 1 0.500000 0.490543 0.490543 0.484286
13 1 0.500000 0.498844 0.498844 0.472785
14 1 0.470722 0.470722 0.459298 0.445021
17 1 0.474916 0.462847 0.462847 0.448390
20 1 0.474916 0.463449 0.463449 0.452999
22 1 0.470597 0.459411 0.459411 0.457600
23 1 0.474916 0.465931 0.465931 0.465700

for surface subdivision analysis. Reif [17] proved
that the regularity (one-to-one and non-singular as-
pect) of the characteristic maps guarantees the C1

continuity of a subdivision scheme around extraordi-
nary cases in the limit.
For all the cases of extraordinary topology we ex-
amined, a local subdivision matrix S of the scheme
satisfied an eigenvalue property of

λ0 = 1� λ1 ≥ λ2 ≥ λ3 � λ4, . . . , λn, (25)

where λi’s are the eigenvalues of S in decreasing
order. This property is also in accordance with the
empirical results by Bajaj et al. [1] The eigenval-
ues of the selected cases are listed in Tables 1 and 2.
The weight for the scheme is given as w = 1

16 in
all cases. It is important to mention that we have
three subdominant eigenvalues that are strictly less
than 1. In addition, Fig. 15 shows the control nets
of the characteristic map from each of the sub-
dominant eigenvectors. It is important to note that

Table 2. Eigenvalues for a selection of the extraordinary edge
cases

Face number λ0 λ1 λ2 λ3 λ4

5 1 0.5 0.484286 0.484286 0.404687
6 1 0.5 0.470715 0.470715 0.461119
7 1 0.5 0.495818 0.495818 0.439426
10 1 0.5 0.490543 0.490543 0.484286
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Fig. 16. Information stored in our version of the radial-edge data
structure

although the extraordinary vertex cases we have
chosen for each valence do not represent all the
possible configurations, they constitute a broad se-
lection of the topologies one might encounter in
practice.

6 Experimental results and
implementation issues

As can be seen in Figs. 17–23, we have applied
our new subdivision scheme over a wide variety
of geometries and topologies. All the examples
shown in the figures exhibit some kind of irregu-
larities. We implemented our subdivision scheme
in C++ on a desktop PC equipped with a 2.2 GHz
CPU and 1.0 GB RAM. Rendering was done with
OpenGL.

6.1 Data structures

In our implementation of the subdivision algorithm,
we employ a simplified version of the radial-edge
data structure [15, 19], which is a generalization of
the winged-edge data structure to arbitrary mani-
folds. Our implementation consists of four lists to
store the cells, faces, edges and vertices. Each topo-
logical entity (cell, face, edge, or vertex) contains
several short lists that represent its local topologi-
cal neighborhood. For instance, in our implemen-
tation, a face object consists of an ordered list of
directed edges and a pair of pointers to the cells

that share the face. Figure 16 illustrates the infor-
mation stored for each type of topological entity ap-
pearing in the data structure. A use object is em-
ployed to store the orientation of an edge (or face)
with respect to the face (or cell) in which it ap-
pears. Auxiliary information pertaining to the sub-
division scheme is also stored, including a flag in-
dicating whether an entity is in the interior or on
the boundary, the coordinate positions of the ver-
tices, etc.

7 Conclusions and future work

We have proposed, derived and analyzed the first
subdivision solid algorithm based on the interpola-
tion of arbitrary hexahedral meshes. Our subdivi-
sion solid scheme is based on the well-known La-
grange polynomials and has provable convergence
and continuity properties. Since our algorithm is in-
terpolatory and uses hexahedral meshes for shape
representation, it can be easily incorporated into
a wide variety of solid modeling applications. We
have shown that the scheme is C1 continuous in
the regular case and for many topological config-
urations. Hence, it can be used to construct and
subdivide complex hexahedral meshes of arbitrary
geometry and topology without loss of smoothness
in the interior.
Future work involving subdivision solid schemes can
be divided into two categories: theoretical and prac-
tical. We anticipate that volumetric subdivision al-
gorithms will continue to develop and improve in
response to strong user demand for algorithms of
higher continuity. It is also imperative that a gen-
eral scheme for analyzing subdivision solid algo-
rithms be developed. We have taken the first steps
in this direction. We are also investigating local,
adaptive subdivision (refinement) algorithms, which
could further broaden their application scope, but
which would require significant changes to the sub-
division scheme and its data structures. This lack of
a local, adaptive refinement algorithm is one of the
limitations of our present work and will be investi-
gated aggressively in the future.
We envision applications of subdivision solid
schemes in other domains such as volume visual-
ization, data representation and compression, and
dynamic simulation. Using the subdivision rules, we
will be able to interpolate smoothly values other
than geometry, such as mass, damping, stiffness,



K.T. McDonnell et al.: Interpolatory, solid subdivision of unstructured hexahedral meshes

17a 17b 17c 17d 17e

18

19

20

Fig. 17. Topologically complex model featuring many holes and handles. a Control mesh. b Control mesh after two levels of
subdivision. c,d A cut-away view of the model after one and two levels of subdivision, respectively. e Zoomed view of model
after three levels of subdivision
Fig. 18. Mechanical part exhibiting complex topology and extraordinary vertices in the interior
Fig. 19. Small features can be represented and attached to large models without patching
Fig. 20. Disconnected portions of a model can be represented in a single mesh



K.T. McDonnell et al.: Interpolatory, solid subdivision of unstructured hexahedral meshes

21

22

23a 23b 23c

Fig. 21. Geometrically simple bridge model exhibiting non-trivial topology
Fig. 22. Jet engine model comprised of two disconnected parts
Fig. 23. Material properties can be interpolated smoothly throughout the entire volumetric domain. a Control mesh with
color. b,c Model after three levels of subdivision

etc. As an example, our scheme was used to gen-
erate the color map depicted in Fig. 23 by subdi-
viding the red, green and blue color components.
We are presently exploring such ideas and are in-
vestigating how the unique advantages of subdi-

vision solid algorithms can be exploited in other
applications.
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