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Abstract

Subdivision has gained popularity in computer graphics
and shape modeling during the past two decades, yet volu-
metric subdivision has received much less attention. In this
paper, we develop a new subdivision scheme which can in-
terpolate all of the initial control points in 3D and generate
a continuous volume in the limit. We devise a set of solid
subdivision rules to facilitate a simple subdivision proce-
dure. The conversion between the subdivided mesh and a
simplicial complex is straightforward and effective, which
can be directly utilized in solid meshing, finite element sim-
ulation, and other numerical processes. In principle, our
solid subdivision process is a combination of simple linear
interpolations in 3D. Affine operations of neighboring con-
trol points produce new control points in the next level, yet
inherit the original control points and achieve the interpo-
latory effect. A parameter is offered to control the tension
between control points. The interpolatory property of our
solid subdivision offers many benefits which are desirable
in many design applications and physics simulations, in-
cluding intuitive manipulation on control points and ease
of constraint enforcement in numerical procedures. We out-
line a proof that can guarantee the convergence and C 1

continuity of our volumetric subdivision and limit volumes
in regular cases. In addition to solid subdivision, we de-
rive special rules to generate C1 surfaces as B-reps and
to model shapes of non-manifold topology. Several exam-
ples demonstrate the ability of our subdivision to handle
complex manifolds easily. Numerical experiments and fu-
ture research suggestions for extraordinary cases are also
presented.

1. Introduction and Background

Subdivision offers an effective way to represent geo-
metric shapes such as curves and surfaces. It has been re-
searched for more than 20 years since the early pioneer-

ing work by Catmull and Clark [2]. To date, it has stimu-
lated ever-increasing interest in both theoretical and practi-
cal aspects. In essence, the success of subdivision is primar-
ily because of its simplicity and ease of use. A subdivision
process in its simplest form can be essentially expressed as
successive affine combinations from the coarser to the finer
step, i.e.,

p′ = Sp,

where S is a subdivision matrix whose entries represent
all the subdivision rules (i.e., affine operations). By suc-
cessively introducing new vertices, we hierarchically refine
a mesh and acquire a desired shape in the limit. In many
cases, the limit shape is of well-known form, for instance,
B-spline or Box spline [2, 12, 16, 3]. However, they often-
times result in an approximate scheme that does not guar-
antee a geometric invariant of control points in subsequent
levels. It may be noted that most of subdivision schemes are
based on edge bisection, which introduces 4 new cells for
each triangle or quadrilateral. Kobbelt [10] suggests a sub-
division scheme based on a tiling scaled by the factor

√
3.

Velho’s 4-8 subdivision [16] utilizes 4.82 tiling to gener-
ate Box splines. They both result in a gradual approach to
the limit surface.

1.1. Interpolatory Subdivision

Dyn et al. [6, 7] have intensively investigated interpola-
tory subdivision schemes and their variations. Unlike the
approximate subdivision rules, these schemes interpolate
the initial control points, which permit points to be geomet-
rically fixed in subsequent levels. Dyn et al. [5] derive a se-
ries of interpolatory schemes for surfaces using generating
functions, averaging, and tensor products, and give detailed
analyses of their convergence on a regular grid. Note that,
it is relatively easier to enforce constraints in any interpo-
latory scheme because of its invariant property. Therefore,
it is more suitable for finite element analysis, physics-based
simulation, etc. One key motivation for this work is to de-



Figure 1. SMI logo and its cross-section created using our interpolatory subdivision scheme for
solids. The new scheme successfully models complex structures inside the solid. It can also han-
dle non-trivial topology with ease. Note that, throughout this paper the boundary of solid models is
colored blue, and the cross-section of solid models is colored yellow.

velop a novel subdivision scheme for solid models that can
interpolate all the control points scattered in 3D.

1.2. Subdivision Analysis

Since Doo and Sabin’s work [4], there has been much
progress in analysis of subdivision schemes. Mostly, the
analysis has been concentrated on extraordinary cases.
Much literature [15, 17, 19] demonstrates proofs of conti-
nuity of various schemes, mainly based on spectral analysis
techniques. Reif [15] discusses the necessary and sufficient
conditions of continuity around extraordinary vertices us-
ing characteristic maps and spectral analysis. Dyn et al. [8]
detail a similar proof for interpolatory schemes on regu-
lar meshes.

1.3. Volume Subdivision

Despite the popularity of subdivision, there has been less
research regarding volumetric subdivision, i.e., subdivision
solids. MacCracken et al. [13] propose a tensor-product ex-
tension of Catmull-Clark subdivision in the volumetric set-
ting, mainly for the purpose of free-form deformation in 3D
space. Later on, Bajaj et al. [1] further extended the scheme
with analysis based on numerical experiments. Their ap-
proach is interesting because it can be utilized to generate
non-manifold meshes. Most recently, Chang et al. [3] sug-
gest non-tensor-product based subdivision over tetrahedral
meshes whose limit solid is a trivariate Box spline. Addi-
tionally, Peters et al. [14] use 7-directional trivariate Box
splines to blend CSG primitives. It may be noted that sta-
tionary subdivision generally has problems which are more
apparent in interpolatory schemes. Kobbelt et al. [11] sum-
marize variational subdivision schemes which minimize
fairness functionals during the subdivision process. Weimer

and Warren [18] suggest variational schemes whose lim-
its are solutions for certain Partial Differential Equations
(PDEs).

1.4. Research Contribution

In this paper, we devise a novel interpolatory subdivision
scheme for volumetric models that can be decomposed into
simplicial complexes. We choose the octet-truss as our un-
derlying mesh, which consists of two types of polyhedra,
i.e., tetrahedra and octahedra. Note that, this mesh can be
converted into a simplicial complex in an efficient way and
vice versa. This offers the benefit of generating a tetrahe-
dral mesh, which is more desirable in many finite element
applications. The rule is based on simple connectivity in-
formation and affine combinations with tension control by
means of a weight. Our scheme is C 1, stationary, interpola-
tory, and based on edge-bisection. In light of its interpola-
tory aspect, the scheme has several key advantages includ-
ing:

• it is straightforward to enforce constraints dur-
ing physics-based simulation,

• it supports intuitive, direct manipulation of control
points,

• there is no need for an auxiliary subdivision matrix for
vertex points, and

• it is not necessary for subdivision matrix inversion dur-
ing data fitting applications.

Meanwhile, it also inherits many attractive properties of ex-
isting subdivision schemes such as:

• multiresolution analysis and levels of detail,

• numerical efficiency and stability,

• arbitrary topology or genus, and



• simplicity in implementation.

In the remainder of this paper, after detailing the sub-
division rules of our new interpolatory volumetric subdi-
vision over simplicial complexes, we also give an outline
of its convergence analysis and a proof of its C 1 continu-
ity for regular meshes. We then document numerical results
on irregular cases. Finally, we present several examples that
demonstrate the modeling potential of our generalized rules
to represent shapes with creases and of non-manifold topol-
ogy.

2. Subdivision Rules

This section details our new subdivision rules.

2.1. The Mesh and the Mask

One of our goals in this paper is to develop an interpola-
tory subdivision scheme whose underlying domain for con-
trol meshes is a simplicial complex. In 3D, it implies that a
control mesh should be a collection of tetrahedra. There are
several benefits of having a simplicial complex as an under-
lying mesh. One of the benefits is the fact that each face of
the cells is also a simplex in a lower dimension. In our case,
faces are triangles, as opposed to the quadrilaterals that ap-
pear in hexahedral meshes. This avoids the ambiguity prob-
lem that occurs in hexahedral meshes during the triangula-
tion of models. Also, a tetrahedral mesh is frequently desir-
able in many finite element analysis and physics-based sim-
ulation applications.

: Edge Points

Figure 2. A simple split of a tetrahedron. It
splits into 4 tetrahedra and an octahedron.

Nevertheless, a simple tetrahedral mesh lacks certain im-
portant properties that are required for the domain of a sta-
tionary subdivision scheme. One important issue is self-
reproductivity. If we simply split a tetrahedron by bisect-
ing its edges, an octahedron occurs inside (see Figure 2).
This suggests multiple ways of splitting it into tetrahedra.
The algorithm therefore requires a careful and complicated
bookkeeping task to unify the splits in the whole process
so that the finer level bears the same connectivity as the
coarser level. It also proliferates extraordinary topologies,

since arbitrarily chosen tetrahedra will propagate extraor-
dinary edges in the structure. Instead, we use octahedra as
the secondary primitive and keep them during the subdivi-
sion, along with information of the major diagonal, which
is a predefined direction for splitting during the process.

Figure 3. A typical example of an octet-truss
mesh. It is comprised of an octahedral grid
with tetrahedra in between.

The resulting domain forms the structure called an octet-
truss (Figure 3), which is well-known in many research
fields. In this way, it can easily maintain the regularity of
the structure as well as simplify the analysis of the scheme.
Moreover, we can quadrisect octahedra by major diagonals
at the desired level to get a mesh that consists of tetrahe-
dra only, if required (see Figure 4).

Figure 4. An octahedron can be quadrisected
into tetrahedra. The red dotted line repre-
sents the major diagonal.

During the subdivision process, tetrahedral cells split
into 4 tetrahedra and an octahedron, and octahedral cells
split into 8 tetrahedra and 6 new octahedra. Figure 5 shows
that an octahedron splits into several sub-cells in subsequent
levels.

For each edge, we need information from its neighbors
to calculate a new point. One-neighbors denote the vertices
of cells sharing the given edge that are not the end points
of the edge (see Figure 6(a)). Two-neighbors means the ver-
tices of cells adjacent to one-neighbors that do not belong
to one-neighborhood (see Figure 6(b)). When finding the
neighbors, we consider an octahedron as 4 sets of tetrahe-



dra (see Figure 4) and apply the same rules as for tetrahe-
dral cases.

2.2. The Rules

The subdivision process can be essentially understood as
a linear interpolation with perturbation. To linearly interpo-
late two points p0 and p1, we can successively introduce a
bisector of segments, i.e.,

p′ =
1
2
(p0 + p1)

in each subdivision step. We introduce perturbation using
information from its neighbors,

p′ =
1
2
(p0 + p1) + f(w, q, r),

where q and r are one-neighbors and two-neighbors, respec-
tively. The weight w controls the tension between control
points. We choose w ∈ [0, 1

8 ) to assure the convergence,
which is explained in Section 4. When w = 0 the sub-
division is simply mesh refinement by edge bisection. We
choose a linear function f in our case. More specifically,
we categorize new points which are introduced in the next
level of subdivision as vertex, edge, and cell points and de-
vise rules for each case.

2.2.1. Vertex Points Since our scheme is interpolatory, it
is obvious that a vertex point is geometrically invariant in
each level. Therefore, if pk is a point in a subdivision level
k, a vertex point vk+1 at level k + 1 is simply assigned by

vk+1 = pk. (1)

2.2.2. Edge Points A new edge point can be written as
three parts of affine combinations, or as a weighted average
of two end points that define the edge, one-neighbors, and
two-neighbors. In the regular case (see Figure 7), the num-
ber of one-neighbors and two-neighbors are both 6. There-
fore, we can express

ek+1 =
1
2
(pk

0 + pk
1) + w

5∑

i=0

qk
i − w

5∑

j=0

rk
j , (2)

Figure 5. An octahedron splits into sub-cells
during the subdivision process.

(a) (b)

Figure 6. Neighbors of an edge. (a) Green
vertices denote one-neighbors. The edge is
colored in red. (b) Blue vertices denote two-
neighbors. They consist of the vertices from
adjacent cells of one-neighbor cells.

where qi and ri are one-neighbors and two-neighbors, re-
spectively. In a more general case, we shall average them
by the number of their neighbors, i.e.,

ek+1 =
1
2
(pk

0 + pk
1) +

M

N
w

N−1∑

i=0

qk
i − w

M−1∑

j=0

rk
j , (3)

where N and M are the numbers of one-neighbors and two-
neighbors, respectively. It should be noted that Equation (3)
only ensures convergence around irregular vertices. There
is a slight, however noticeable, degeneracy when a vertex
has valence of 4, which rarely occurs in a real-world model.

q1 (q2)q5 (q4)

p0

q3p1

r2 (r1)

q0 r0

r3

r4 (r5)

(a) (b)

Figure 7. Neighbors of an edge in the regu-
lar case. We treat octahedral cells as 4 tetra-
hedra. Green and blue vertices denote one-
neighbors and two-neighbors, respectively.
(a) A top view of the mask. The thicker lines
indicate the higher layers. Unfilled circles de-
note vertices in the lower layer. (b) The mask
in 3D view.

2.2.3. Cell Points A cell point occurs during a split of an
octahedron. Since we maintain the major diagonal, the rule
can be considered as an edge rule applied on the major di-
agonal shown in Figure 8(a). In this situation, we can ex-



press a cell point ck+1 at level k + 1 as

ck+1 =
1
2
(pk

0 + pk
1) + w

5∑

i=0

qk
i − w

5∑

j=0

rk
j . (4)

Because of the size of the edge mask, it is relatively dif-
ficult to apply it directly on the mesh, especially when an
extraordinary case occurs. We devise a modified mask (see
Figure 8(b)) which is easier to apply in general. The conti-
nuity around this particular setting is discussed in Section
4.

r5

p0

p1

q3 (q0)

q1

q2

r0 r2

r1 q4

q5

r4

r3

(a) (b)

Figure 8. Cell point rules. (a) A direct applica-
tion of the edge mask over a major diagonal
(top view). The thicker lines and dotted lines
indicate the higher and lower layers, respec-
tively. Unfilled circles denote vertices in the
lower layer. (b) Modified cell mask.

2.3. Special Cases

Not only extraordinary cases but also the boundary and
neighbors of boundary all need special care. In the inter-
est of simplicity, we choose Dyn’s Butterfly scheme [7] for
the boundary representation. In addition, there is the neces-
sity of devising special rules for neighbors of the bound-
ary, since they only have a portion of the neighbors required
to apply the aforementioned rules. As noted and derived in
[20], even the boundary/crease/extraordinary rules for a sur-
face are more complex than one can do justice in a single
paper. It is particularly troublesome in our scheme due to
the large mask sizes. We choose edge bisectors without any
weight for these edge points and only restrict ourselves in
simple cases so that such cases result in minimal deforma-
tion.

3. Experimental Results

Figures 13, 14, and 15 show several examples which
have non-trivial topologies and are oftentimes impossible
to generate as a single object by using surface subdivision

schemes (also refer to Figure 1 and Color Plate). In Figure
16, we use a sweeping curve equation with a specially de-
signed mesh to generate a spiral model. Figure 17 and 18
(see also Color Plate) demonstrates the ability of our new
subdivision scheme to handle non-manifold topology mod-
els without having to introduce a special set of rules. Not
only does the scheme successfully display the solid part
(which is colored in orange), it also has no difficulty in pro-
cessing the surface-only region, which is colored in purple
(see Figure 17 and Color Plate). The rule also can be applied
to the degenerating case (see Figure 18 and Color Plate)
without a significant modification. In addition, the scheme
is also able to define the transition between two different re-
gions. The weight for most of the results reported in this pa-
per is w = 1

16 , unless otherwise documented. Besides the
shape modeling functionality, our novel interpolatory sub-
division scheme can also be readily suitable for many other
solid modeling applications, including:

Direct Manipulation In contrast to an approximate
scheme, changes on control points directly af-
fect the modeled shape (see Figure 19). As a result,
this can offer a naı̈ve user more intuitive interac-
tion between control points and a desired model.

Material Representation Besides shape geometry, we can
also assign material properties to control points and
apply exactly the same subdivision rules on the con-
trol mesh to acquire smoothly interpolated properties.
We refer to Color Plate for examples of the model with
color information associated with control points. The
colors between control points are continuously inter-
polated through the use of our subdivision rules.

Tension Control By controlling the weight w, we will
have different effects on the geometry of our models.
In the case of w = 0 (see Figure 12(a)), the subdivision
simply performs a linear interpolation. By increasing
w, we expect to receive many ripples in a model. Even-
tually, the subdivision diverges if w exceeds a certain
threshold (see Figure 12(f)).

Let us briefly compare our new solid subdivision scheme
with other approximate schemes. In particular, consider the
approximate scheme recently proposed by Chang et al. [3].
Figure 9 demonstrates how these two schemes differ for the
same initial control mesh. As shown in Figure 19, a user can
directly change a model by modifying control points. To en-
force constraints or to perform data fitting, the approximate
scheme oftentimes requires the time-consuming computa-
tion of assembling the subdivision matrix and explicitly cal-
culating its inverse, which the interpolatory scheme does not
need in most cases. In addition, because of the fact that ver-
tex points are control points from the previous level, the in-
terpolatory scheme requires less memory than the approxi-
mate one.



(a) (b) (c)

Figure 9. A comparison between an approx-
imate scheme and the proposed interpola-
tory scheme. (a) The original control points.
(b) Subdivision at level 4 by the approximate
scheme [3]. (c) Subdivision at level 4 by the
interpolatory scheme.

4. Analysis

This section briefly discuss the issues of convergence and
continuity of our new scheme.

4.1. The Continuity on Regular Topology

Suppose that the scheme is expressed in matrix form,
p′ = Sp. It is relatively straightforward to confirm that the
scheme is convergent by means of eigenvalue analysis of
S. In particular, the subdominant eigenvalue of S is strictly
less than 1 for w < 1

8 , which is sufficient to show the con-
vergence of our interpolatory scheme. To prove the continu-
ity of the limit solid on regular topology, however, we must
investigate its generating function [17, 8]. In principle, any
binary stationary subdivision scheme for solids can be writ-
ten as

Pk+1(z) = a(z)Pk(z2), z ∈ R3, (5)

where Pk(z) =
∑

µ∈Z3 pk
µzµ is a formal generating func-

tion associated with the control points pk = {pk
µ}µ∈Z3 at

level k, and a(z) is the characteristic polynomial derived
from the subdivision matrix S:

a(z) =
∑

µ∈Z3

aµzµ. (6)

Comparing these coefficients with n iterations of subdivi-
sion process, one can derive [8]

||Sn||∞ = max
γ

∑

ν∈Z3

a
[n]
2nν+γ , (7)

where γ ∈ {0, 1, . . . , 2n − 1}3 and a[n](z) =∏n−1
j=0 a(z2j

) =
∑

µ a
[n]
µ zµ. We now use the special

case of the following theorem [8] to prove the continu-
ity of our scheme.

Theorem. Let the characteristic polynomial of S be the
form

a(z) = q(z)
s∏

i=1

(zθ(i)
+ 1), (8)

where q is a Laurent polynomial and θ(i) ∈ Zs satisfies

|det(θ(1), . . . , θ(s))| = 1. (9)

Let Di be the subdivision matrix corresponding to the poly-
nomial a(z)(zθ(i)

+ 1)−1. Then the subdivision scheme as-
sociated with S is uniformly convergent if and only if for
some L ∈ Z+

||DL||∞ = max
1≤i≤s

||DL
i ||∞ < 1. (10)

The characteristic polynomial of our new scheme has the
form of

a(z) =
∑

µ∈Z3

aµzµ. (11)

To obtain the coefficients, we investigate our subdivi-
sion masks over a regular grid Z3. For instance, Fig-
ure 10 explains how to acquire coefficients associated
with an edge, in this case, from (−1, 0, 0) to (1, 0, 0).
We perform the same process over each edge p2kp2k+1,
k = 0, · · · , 6 ,where p0(−1, 0, 0), p1(1, 0, 0), p2(0,−1, 0),
p3(0, 1, 0), p4(0, 0,−1), p5(0, 0, 1), p6(−1,−1,−1),
p7(1, 1, 1), p8(−1, 0,−1), p9(1, 0, 1), p10(0,−1,−1),
p11(0, 1, 1), p12(−1,−1, 0), and p13(1, 1, 0). The coeffi-
cient is explicitly formulated as

aµ = 1, µ = (0, 0, 0)

aµ = 1
2 , µ = (±1, 0, 0)

= (1, 1, 1), (−1,−1,−1)
= (1, 1, 0), (−1,−1, 0)

aµ = w, µ = (2, 1, 2), (−2,−1,−2)
= (2, 1, 1), (−2,−1,−1)
= (2, 1, 0), (−2,−1, 0)
= (2, 1,−1), (−2,−1, 1)
= (1, 1,−1), (−1,−1, 1)
= (1,−1, 0)

aµ =−w, µ = (3, 2, 1), (−3,−2,−1)
= (3, 1, 1), (−3,−1,−1)
= (3, 1, 0), (−3,−1, 0)
= (2, 3, 2), (−2,−3,−2)
= (2,−1, 0), (−2, 1, 0)
= (2,−1,−1), (−2, 1, 1)

Finally, we have

aµ′ = aµ, if µ′ = σ(µ), σ ∈ S3,

where S3 denotes the set of all permutations over {1, 2, 3},
which is followed by the symmetry of the subdivision mask



in the regular case. The function can be factored using
(1 + z1)(1 + z2)(1 + z3)(1 + z1z2z3). Therefore, it can be
written as

a(z) =
1
2
(z1z2z3)−1p(z)

4∏

i=1

(1 + zθ(i)
) (12)

{θ(i)} = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}, (13)

where p(z) is a Laurent polynomial with respect to z1, z2,
and z3 which is of the form p(z) = 1 − wq(z1, z2, z3). If
w = 0, Equation (12) becomes the generating function of a
linear interpolation.

Figure 10. An example of coefficients for the
generating function. Red, green, and blue
vertices have associated coefficients of 1

2 , w,
and −w, respectively.

To prove that the scheme is C 1, it is sufficient to show
that ||DL

(i1,i2)|| < 1 and ||D′L
i1 || < 1, i1 �= i2 for some L

where

D(i1,i2)(z) = 2(1 + zi1)
−1(1 + zi2)

−1 a(z)
D′

i1(z) = 2(1 + zi1)
−1(1 + z1z2z3)−1 a(z).

Because a(z) is invariant for a permutation on indices, it
is equivalent to show ||DL

(1,2)|| < 1 and ||D′L
1 || < 1 where

D(1,2)(z) = 2(1 + z1)−1(1 + z2)−1 a(z)
D′

1(z) = 2(1 + z1)−1(1 + z1z2z3)−1 a(z),

respectively.
It has been proven numerically that ||DL

(1,2)|| < 1 and

||D′L
1 || < 1 for w = 1

16 , especially when L > 5. In more
general cases, the conditions are satisfied for some L, if
w > 0 is small enough.

4.2. The Continuity over Irregular Topologies

Unlike surface subdivision schemes whose irregu-
lar analysis involves only extraordinary vertices, we must
take care of both extraordinary vertices and edges in

solid schemes [1]. Unfortunately, existing spectral anal-
ysis using Discrete Fourier Transform (DFT) [4, 19]
cannot be directly adopted for solid schemes, as the tech-
nique is based on spectral behavior over a 2-dimensional
domain. However, we can still employ eigenvalue and char-
acteristic map analysis [15] numerically, at least for re-
stricted cases, which are well-understood techniques for
surface subdivision analysis.

For instance, local subdivision matrices S of the scheme
around extraordinary vertices and edges satisfy an eigen-
value property of

λ0 = 1 � λ1 ≥ λ2 ≥ λ3 � λ4, . . . , λn, (14)

where λi’s are eigenvalues of A in decreasing order. It is
worth mentioning that we have triple subdominant eigen-
values which are strictly less than 1. Also, we have numer-
ically generated characteristic maps from those eigenvalues
and associated eigenvectors as their control nets, and have
confirmed that the maps are one-to-one and regular over a
large number of iterations. Some of examples are shown in
Figure 11.

Even though we can confirm the regularity of the charac-
teristic map for each specific case, it is impossible to prove
it symbolically due to the aforementioned reason (i.e., DFT
is not applicable in volumetric settings). In general, extraor-
dinary edge cases are limited and simple to generate. How-
ever, the number of extraordinary vertex cases is exponen-
tially bounded by the vertex valence n and is associated
with the number of triangulation of n points (in general po-
sition) over a spherical domain [9]. Further research should
be conducted to exploit a more systematic way in order
to prove extraordinary cases in solid subdivision schemes.
Such an investigation might result in a new spectral analy-
sis tool for even higher domains.

(a) (b) (c) (d)

Figure 11. Control nets for rings of character-
istic maps for our scheme. (a-b) Control nets
for extraordinary edges with 4 and 6 incident
vertices, respectively (cross-sections). (c-d)
Control nets for extraordinary vertices of va-
lence 4 and 6, respectively.



5. Conclusions and Future Work

We have presented a new interpolatory subdivision
scheme for volumetric models which inherits many ben-
efits of other interpolatory subdivision surfaces. Among
many advantages for shape modeling, ease of con-
straint enforcement and intuitive control point manipu-
lation are two key features, which have been shown in
examples above. The underlying octet-truss mesh of-
fers the compatibility with other existing meshes, including
different types of commonly-used finite element func-
tions. In contrast to surface subdivision schemes, our new
solid scheme can handle complex structures inside mod-
els and treat non-manifold topologies easily without
having special rules. Moreover, the scheme can repre-
sent material properties associated with control points
and interpolate them smoothly. The proof of C 1 continu-
ity has been given briefly, which ensures the quality of limit
solids.

Even though we have outlined the convergence and con-
tinuity analysis for our scheme, most of questions involving
irregular cases are still open and under-explored in general.
In particular, the lack of a proper analysis tool has hindered
the authors from performing symbolic spectral analysis for
general cases. Due to this fact, our scheme is unable to guar-
antee a higher order of continuity across extraordinary ver-
tices and edges. Further research should be followed after
this paper to address these issues. In addition, other appli-
cations utilizing the new scheme should be pursued, includ-
ing data fitting, conversion from existing volumetric data,
interactive modeling, and more effective and robust mod-
eling techniques for non-manifold geometry of arbitrarily
complicated topology.
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Figure 13. An embedded character. (a) The original control points. (b) The boundary of the model at
level 3. (c) The cross-section of the model which reveals the “S” due to the vacancy inside the box.
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Figure 14. A knot-shaped model that has complex topology. (a) The original control points. (b) The
boundary of the model at level 3. (c) A cross-section of the model.
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Figure 15. A simple design for space shuttle using our subdivision tools. (a) The original control
points. (b) The boundary of the model at level 3. (c) Cross-sections of the model.
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Figure 16. The scheme can be used to design a practical model such as a spiral. (a) The original
control points. (b) The boundary of the model at level 3. (c) Cross-sections of the model.
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Figure 17. A torus model with non-manifold topology. (a) The original control points. (b) Cross-
sections of the control points. (c) Cross-sections of the model at level 4. The purple region indi-
cates the part of the model where only surface information is offered.

(a) (b) (c)

Figure 18. A segmented ring model. (a) The original control points. Each segment meets at a line
which forms a non-manifold. (b) The boundary of the model at level 4. (c) A cross-section of the
model at level 4.

(a)
(b) (c)

Figure 19. A direct manipulation on control points. (a) The original control points and their modifica-
tion by a user. (b) The shape generated using an approximate scheme. (c) The interpolatory scheme
case. The changes on the model are more interactive and intuitive.


