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Abstract. Reconstruction of missing or damaged portions of images is an ancient practice used extensively in 
artwork restoration. Recently, a few digital inpainting models based on the use of partial differential equations 
have been proposed. Unfortunately, these algorithms are computationally expensive, usually taking a few 
minutes to restore small portions of an image, which makes them inappropriate for interactive applications. 
We discuss the causes of inefficiency of these algorithms and present a simple inpainting model that is two to 
three orders of magnitude faster, while producing results comparable the ones obtained with current methods.   

1 Introduction 
Reconstruction of missing or damaged portions of images is an ancient practice used extensively in artwork 
restoration. Also known as inpainting or retouching, this activity consists of filling in the missing areas or 
modifying the damaged ones in a non-detectable way for an observer not familiar with the original images 
[2]. Uses of image inpainting range from restoration of photographs, films and paintings, to removal of 
occlusions, such as text, subtitles, stamps and publicity from images. In addition, inpainting can also be 
used to produce special effects.  

Traditionally, skilled artists have performed image inpainting manually. Recently, digital techniques 
have been used for automatic restoration of scratched films [10] and Bertalmio et al [2] have introduced a 
technique for digital inpainting of still images. This work has inspired other researchers [4] [5], including 
us, to explore the subject. The algorithms described in [2] [4] [5] use iterative methods for solving partial 
differential equations (PDEs), usually requiring several minutes on current personal computers for the 
inpainting of relatively small areas [2] [15]. Given the large range of applications of image inpainting, it 
would be desirable to have such a feature included as part of popular image tools such as PhotoShop. 
Unfortunately, having to wait several minutes is unacceptable for an interactive session, and faster 
algorithms are needed. 

We have analyzed the sources of limitations and inefficiencies of the current digital inpainting 
algorithms and designed a simple inpainting model based on these observations. The sampling theorem [8] 
imposes a fundamental limit on the quality of the information that can be restored by any automatic 
inpainting model, despite of its mathematical sophistication. The human visual system can tolerate some 
amount of blurring in areas not associated to high contrast edges. We use these facts to design an inpainting 

Fig. 1. Left: An 1865 Photograph of Abraham Lincoln taken by Alexander Gardner (courtesy of Wing Yung and 
Ajeet Shankar [15]). Right: Image restored with our algorithm. The inpainting time took about half of a second. 
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algorithm that produces results comparable to those found in the literature [2] [4] [5], but two to three 
orders of magnitude faster. Figure 1 (left) shows a famous cracked photograph of Abraham Lincoln taken 
in 1865. The image to its right shows the result obtained with our algorithm in 0.61 seconds on a 450 MHz 
Pentium III PC.  

Our solution is (in retrospect) very simple. Thus, the primary contribution of this work is not the 
inpainting algorithm per se, but instead the analysis of the problem, which shows that sophisticated 
mathematical models have limited impact on automatic inpainting procedures. We illustrate our point and 
the effectiveness of our approach with examples of restoration of old photographs, vandalized images, and 
text removal, similar to the ones found in the literature.  

2 Previous and Related Work 
Digital image inpainting techniques can be classified according to their primary goal as film restoration, 
texture synthesis and disocclusion [2]. In the case of film restoration, data obtained from adjacent frames is 
the primary source of information for the inpainting process [5]. Due to the large number of frames 
associated with a movie, fully automated and fast techniques are desired. Texture synthesis consists of 
generating, from a given texture sample, a new texture that is perceived as being statistically similar to the 
sample [16]. Notice that texture synthesis is an important component of the general image-inpainting 
problem, since the area to be retouched might involve textured surfaces. Disocclusion techniques try to 
recover information about surfaces not directly visible in a scene and, therefore, are the closest in relation 
to inpainting of still images.  Disocclusions have been studied both in computer vision [12] and image-
based rendering [11] contexts.  

Bertalmio et al [2] pioneered a digital image-inpainting algorithm based on a PDE model. A user-
provided mask specifies the portions of the input image to be retouched. The algorithm treats the input 
image as three separate channels (R, G and B). For each channel, it fills in the areas to be inpainted by 
propagating information from the outside of the masked region along level lines (isophotes). Isophote 
directions are obtained by computing at each pixel along the contour a discretized gradient vector (this 
gives the direction of largest spatial change) and by rotating the resulting vector by 90 degrees. This intends 
to propagate information while preserving edges. A 2-D Laplacian [8] is used to locally estimate the 
variation in smoothness and such variation is propagated along the isophote direction [2]. After every few 
step of the inpainting process, the algorithm runs a few diffusion iterations to smooth the inpainted region. 
Anisotropic diffusion [P] is used in order to preserve edges across the inpainted region.  

Inspired by the work of Bertalmio et al. [2], Chan and Shen proposed two image inpainting algorithms 
[4] [5]. The Total Variational (TV) inpainting model [4] uses an Euler-Lagrange equation and inside the 
impainting domain the model simple employs anisotropic diffusion [13] based on the contrast of the 
isophotes. This model was designed for inpaintings of small regions and while it does a good job in 
removing noise, it does not connects broken edges (single lines embedded in a uniform background) [4]. 
The Curvature-Driven Diffusion (CCD) model [5] extended the TV algorithm to also take into account 
geometric information of isophotes when defining the “strength” of the diffusion process, thus allowing the 
inpainting to proceed over larger areas. While it can connect some broken edges, the resulting interpolated 
segments look blurry.    

While nonlinear PDE-based image restoration methods have the potential to systematically preserve 
edges, the inpainting problem is very ill posed in general and fast numerical implementations are difficult 
to achieve [5]. It is equally hard to find appropriate mathematical models for inpainting [5]. Thus, despite 
its elegance, it is not clear if Bertalmio’s inpainting model is fully appropriate to the problem. A careful 
examination of the results presented in [2] (not reproduced here) reveals that sharp edges are not always 
preserved. For instance, the reconstructed region where the mask crosses the VW Beetle near the 
windshield appears blurred with broken edges (Figure 6 (top) [2]). Similar artifacts can be found in both 
restored images shown in Figure 6 [2]. Since no criteria have been defined for locally stopping the 
inpainting, the process is constantly applied to all masked pixels, regardless of the local smoothness of the 
region. As a result, computationally expensive operations might be unnecessarily performed, resulting in 
longer processing time.  

2.1 Discussion 
Principle 1: Given a region to be inpainted, the Shannon-Whittaker sampling theorem [8] imposes a 
fundamental restriction on the scale of the features that can be automatically restored by any inpainting 
model.  
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Thus, although it might still be possible to reconnect broken edges in some cases, exact reconstruction 
of the inpainted regions is only feasible for locally smooth areas. In practice, however, images can contain 
arbitrary spatial discontinuities. Even if some knowledge about the context of the region to be inpainted can 
be made available, one can only hope to produce a plausible rather than an exact reconstruction. Thus, in 
order for any inpainting strategy to be reasonably successful for a large class of images the regions to be 
inpainted must be locally small. As the inpainted regions become smaller, simpler diffusion models can be 
used to locally approximate the result produced by more expensive ones (geometrically, this is analogous to 
piecewise linear interpolation).  
Principle 2: Chromatic perception and separation between regions is affected by the gradient between them 
[9]. As a result, the human visual system is very sensitive to edges, but can tolerate certain amounts of 
blurring elsewhere.  

There is also a relative independence between the form of a surface and the microstructure of its 
contour [9]. Smaller inpainting domains also help to hide reconstruction errors in areas of the image 
containing stochastic textures, such as the leaves of the tree in Figure 6. 

3 A Fast Digital Inpainting Algorithm 

Let Ω be a small area to be inpainted and let ∂Ω be its boundary. Assuming Ω is small, any simple 
diffusion algorithm can be used to propagate information from ∂Ω into Ω, with a bounded error. A slightly 
improved version of this simple algorithm would reconnect edges reaching ∂Ω (for instance, using an 
approach similar to the one described in [12]), remove the new edge pixels from Ω (thus splitting Ω into a 
number of smaller sub-regions), and then perform the diffusion process as before.  

We devised a simple diffusion algorithm, which consists of initializing Ω by clearing its color 
information and repeatedly convolving (since we use rotationally symmetric kernels, a simpler correlation 
operation [7] suffices) the region to be inpainted with a diffusion kernel. ∂Ω is a one-pixel thick boundary 
and the number of iterations is a user-specified parameter. Figure 2 (left) shows the pseudocode of the 
algorithm. Despite its simplicity, it performs surprisingly well (or, given the principles discussed in section 
2.1, not so surprisingly). All reconstructed images shown in this paper were obtained with this algorithm or 
with a minor variation of it. 

3.1 Preserving Edges 
This simplest version of the algorithm can introduce some artifacts as Ω crosses the boundaries of high 
contrast edges (Figure 3(b)). Such artifacts are visible on the edges between black regions and horizontal 
white bars in the façades of the buildings shown in Figure 4. Other inpainting algorithms are also unable to 
preserve all kinds of edges.  

In practice, the intersections between Ω and high contrast edges are the only places where anisotropic  
diffusion is required, and they account for a very small percentage of the image area. Building a mask is an 
important and the most time-consuming step of the inpainting process, requiring user intervention. Since 
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initialize Ω;  
for (iter =0; iter < num_iteration; iter++) 
     convolve masked regions with a diffusion kernel; 

Fig 2. Left: Pseudocode for the fast inpainting algorithm.. Right: different diffusion kernels used with the 
           algorithm. a = 0.073235, b = 0.176765, c = 0.125. 

Fig. 3.  (a) Image to be inpainted. (b) Result of the isotropic diffusion introduces some blurring along high contrast
edges. (c) The user-added diffusion barriers. (d) Result.   
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our algorithm can inpaint an image in just a few seconds, it can be used for interactive construction of tight 
masks1. We exploit this interactivity to easily implement edge reconnection by defining, during the mask 
construction process, diffusion barriers. This accomplishes a result similar to anisotropic diffusion, but 
without the overhead of applying it to every single pixel. Figure 3 illustrates the idea. Figure 3(a) shows a 
portion of an image to be inpainted. The simple diffusion-based inpainting algorithm produces blurred 
regions at the intersections between Ω and high contrast edges indicated by the small circles in Figure 3(b). 
By appropriately adding diffusion barriers (line segments across the mask), the user stops the diffusion 
process from mixing information from both sides of the mask (see little edges shown in Figure 3(c)). The 
diffusion barriers are then used in conjunction with the mask to produce the result shown in Figure 3(d).  

 

4 Results 
We have implemented the algorithm described in Figure 2 in C++ and tried two different diffusion kernels 
(Figure 2 (right)). In both cases the results were similar. All images shown in the paper were generated 
using a 450 MHz Pentium III PC with 128 MB of memory running Windows98 and using the leftmost 
kernel shown in Figure 2. In all cases, 100 diffusion iterations were used. Results shown in Figures 4, 6, 7 
and 8 were produced with the simplest diffusion version of the algorithm. For Figure 1, two diffusion 
barriers were used: one at each boundary between Lincoln’s hair and the background. For Figure 5, we 
used our own generated mask and four diffusion barriers: one between the left white border and the gray 
background, one between the background and the left side of each of the two bigger girls’ faces, and one 
between the right arm and the dress of the girl in the center.    

The cost of inpainting is linear on the size of the inpainted region and algorithms are cache intensive. 
For Lincoln’s portrait, the inpainting time of our algorithm was 0.61 seconds. Yung and Shankar [15] have 
reported an inpainting time of 2 minutes and 25 seconds for the same input image using an implementation 
of the algorithm described in [2], on a 450 MHz Pentium II PC with 128 MB of memory. Despite the 
longer time, the results they obtained exhibits blurry spots on the masked boundary between the hair and 
the background [15]. Figures 4 (left) and 5 (left) were used in Bertalmio et al original paper [2] and were 
obtained from Bertalmio’s web site [3]. For the example shown in Figure 5, Bertalmio et al. [2] reported an 
inpainting time of approximately 7 minutes, or 2 minutes when a two-level multiresolution approach is 
used. These times were measured on a 300 MHz Pentium II PC (128 MB of memory under Linux). The 
image shown in Figure 5 (right) was produced with our algorithm in 1.21 seconds.    

Figures 6, 7 and 8 illustrate different kinds of features found in actual photographs. Figure 6, shows a 
640x480-pixel photograph exhibiting uncorrelated high frequencies represented by the leaves of the trees. 
It was superimposed with a textual mask (18 pt font size) covering 18.77% of its original area. The restored 
image, obtained in 6.37 seconds, essentially recovers all details of the original picture. For instance, notice 
the children playing in the back, as well as the details of the doors, windows and columns. Figure 7 shows a 
640x480-pixel image containing very few high contrast edges, but with 14.54% of its area scratched. The 
image shown on its right was recovered in 5.87 seconds. Finally, Figure 8 shows an underwater scene 
(512x384 pixels) containing a large number of high contrast edges and superimposed with a mask covering 
16.19% of its area.  Figure 8 (right) was reconstructed in 4.06 seconds. Notice that such a reconstruction is 
mostly fine, except for branches that became disconnected on the top right portion of the image. Due to the 
relatively small scale of some masked branches, other inpainting techniques will likely to fail to connect 
these edges. Table 1 summarizes the inpainting results obtained on two different systems. 

The quality of an inpainting is a subjective issue. One possible way to quantify the quality of a 
reconstruction is to start with a known image, mask some of its areas, restore them and compare the result 
with the original one. However, error measurements should take into account a perceptual metric [14] as 
opposed to just some Euclidean metric applied to the RGB color space. Unfortunately, perceptual metrics 
are still not completely reliable due to incomplete understanding of our visual system. Instead, we used the 
mean-square error (MSE) of the reconstructed region computed for the R, G and B channels as a measure 
of the quality of the reconstruction. MSE is frequently used in image processing to assess error. For the 
case of Figures 4 and 5, the MSE was computed against images restored by Bertalmio et al. and available at 
their web site [3]. The errors associated with the reconstruction of the images shown in Figures 6, 7 and 8 
were computed using the original photographs as reference. The results are summarized in Table 2, sorted 
by increasing error. Notice that for the case of images not containing sharp color or intensity discontinuity 

                                                           
1 Our system has a suit of image processing and editing tools that make the mask construction process even simpler.  
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(e.g, three girls and baby Lu) the error is very small. In particular, for the case of the three girls, our result 
is virtually indistinguishable from the one produce by Bertalmio et al.  

As expected, images containing large amounts of high frequencies (Yard and Underwater), present 
larger reconstruction errors. Despite the error values, the reconstructed images look indeed very good 
(Figures 6 (right) and 8 (right)). Although we have not performed any rigorous experiments, we have 
informally shown these results on a monitor screen and asked several people if they could find any 
problems in these images. Nobody reported problems with the reconstructed picture of the yard. In this 
case, the high frequency regions correspond to the trees leaves, which due to its stochastic nature help to 
mask the error. In the case of the underwater image, the error is again distributed across all high frequency 
regions. However, it only seems to be noticeable in areas containing predictable high contrast edges, such 
as the branches on the top right portion of the image. Careful observers can identify these disconnected and 
blurred edges.  
 
    

Image Time PIII 
450 MHz 

Time Athlon 1 
GHz 

Image Time PIII 
450 MHz 

Time Athlon 1 
GHz 

Lincoln 0.61 sec. 0.30 sec. Yard 6.37 sec. 1.90 sec. 
New Orleans 2.53 sec. 0.71 sec. Baby Lu 5.87 sec. 1.70 sec. 
Three girls 1.21 sec. 0.49 sec. Underwater 4.06 sec. 1.11 sec. 

 
 

Image MSE r MSE g MSE b Masked 
pixels 

Three Girls 33.88 33.88 33.88 9,264 
Baby Lu 61.32 66.9 72.40 42,061 
New Orleans 347.53 269.57 290.59 20,795 
Yard 729.76 725.73 732.90 57,688 
Underwater 802.10 589.26 510.06 31,831 

 
5 Conclusions and Future Work 
A recent interest for image restoration has lent to the creation of a few PDE-based inpainting models [2] [4] 
[5], which are relatively expensive to evaluate. Signal theory constrains the quality of reconstruction that 
can be achieved by any automatic inpainting procedure regardless of its underlying mathematical model. In 
order to be applicable to images containing arbitrary contents, the inpainting domain must be kept locally 
small. Moreover, small domains of irregular shapes help to the reconstruction error in areas containing 
stochastic textures. Based on these facts, we have presented a very simple isotropic diffusion model 
extended with the notion of user-provided diffusion barriers. Such a simple model produces results 
comparable to previously known non-linear models, but are two to three orders of magnitude faster, thus 
making inpainting practical for interactive applications. For instance, our algorithm can be easily 
incorporated as a plug-in to standard image tools such as Photoshop.  

Ideally, the mask Ω should include exactly the region to be retouched. If smaller, ∂Ω will contain 
spurious information, which will be carried into the restored area. If bigger, some possibly important 
information might be discarded. Since changes in Ω imply changes in ∂Ω, changes can be expected to 
produce different results. Being able to create and refine Ω interactively can greatly improve the quality of 
the reconstruction and avoid error correlation.  

Although diffusion barriers could be used to reconnect edges in Figures 4 and 8, an automatic 
procedure similar to the one described by Nitzberg et al [12] is preferable and we are currently 
investigating alternative solutions to this problem. It is desirable to be able to fill in areas of textured 
surfaces as a way to relax the constraint on the local size of the inpainting domains imposed by the 
sampling theorem. We are currently investigating the integration of our approach with a fast texture 
synthesis algorithm for natural textures [1]. 

Table 1. Inpainting time measured using two systems: a 450 MHz PIII PC and a 1 GHz Athlon PC 

Table 2. Mean Square Error for the RGB channels of the restored images 
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Fig. 5.Left: Old photograph (courtesy of Marcelo Bertalmio [3]). Right: Restored image obtained with our algorithm. 

Fig. 4.Left: Picture with superimposed text (courtesy of Marcelo Bertalmio [3]). Right: Restored image obtained with our algorithm. 
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Color Plates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Yard. Left: Image containing uncorrelated high frequency with text covering 18.77% of its area. Right: restored image
obtained with our algorithm. Notice the children playing in the back, and the details of the doors, windows and columns.  

Fig. 7.  Baby Lu. Left: Image containing few high contrast edges. The mask covers 14.54% of its area. Right: restored image. 

Fig. 8.  Underwater. Left: Image containing many high contrast edges, with text covering 16.19% of its area. Right: restored
image. Although the error is distributed across all high frequency regions, it is noticeable at the broken and blurred white edges on
the top right. 


